Strange aspects of locally isothermal astrophysical disks and the stability of magnetized massive disks

Min-Kai Lin
minkailin@email.arizona.edu

Steward Theory Fellow
University of Arizona

February 4 2015
Interests

- Astrophysical fluid dynamics
- Disk-planet interactions
- Self-gravitating disks
- Disk instabilities, large-scale structures
- Magneto-hydrodynamics (new)
- Numerical simulations
- Linear/analytical hydrodynamics/methods
Large-scale structures in circumstellar disks

Example: transition disk around HD 142527

(Fukagawa et al., 2013)

Note the scale: \(O(10^2) \) AU
Large-scale structures in circumstellar disks

Example: transition disk around HD 142527

(Spiral scales: S2 from ~ 500AU to ~ 600AU

(Christiaens et al., 2014)
Modeling hydrodynamics at large distances

- Can we make simplifications?
- Example: irradiated disks

Radiation hydrodynamic simulations from Stamatellos & Whitworth (2008)
- Temperature does not change much as it is essentially set externally
The locally isothermal disk

- Take this to the *idealized limit* of prescribing the temperature distribution:
 \[T = T(r). \]

- Tremendous simplification: no energy equation to consider
 \[\rightarrow \] cheaper numerical simulations

- Example: long term disk-planet simulations
The locally isothermal disk

- Take this to the *idealized limit* of prescribing the temperature distribution:
 $$T = T(r).$$

- Tremendous simplification: no energy equation to consider
 → cheaper numerical simulations

- What are the fundamental consequences?
Angular momentum conservation

Essential to all rotating disk problems:

\[\frac{\partial J}{\partial t} + \nabla \cdot F = T_{\text{ext}}. \]

- \(J \): angular momentum density
- \(F \): angular momentum flux
- \(T_{\text{ext}} \): external torques
Linear stability 101

- Split the system into equilibrium and deviations
 \[\Sigma \rightarrow \Sigma_{\text{ref}}(r) + \delta \Sigma(r, t) \]
- Linearized equations \(\rightarrow \) time evolution of deviations or perturbations
Linear stability 101

- Split the system into equilibrium and deviations

\[\Sigma \rightarrow \Sigma_{\text{ref}}(r) + \delta \Sigma(r, t) \]

- Linearized equations → time evolution of deviations or perturbations

Linearized equations → angular momentum conservation for the perturbations

\[\frac{\partial J_{\text{pert}}}{\partial t} + \nabla \cdot \mathbf{F}_{\text{pert}} = T_{\text{ext,pert}}. \]

- ‘pert’ quantities associated with perturbations

- Definition not obvious
External torque in linear theory

\[
T_{\text{ext, pert}} = \begin{cases}
0 & \text{barotropic or adiabatic flow} \\
-\frac{m}{2} \text{Im} \left(\delta \Sigma \xi^* \frac{dc_s^2}{dr} \right) & \text{locally isothermal in 2D} \\
\frac{m}{2} \text{Im} \left[\rho (\nabla \cdot \xi) \xi^* \cdot \nabla c_s^2 \right] & \text{locally isothermal in 3D}
\end{cases}
\]

- Barotropic: \(p(\rho) \), adiabatic: \(\Delta S = 0 \)
- Locally isothermal: sound-speed \(c_s(r) \) fixed
- \(\xi \): Lagrangian displacement, \(m \): azimuthal wavenumber

\[T_{\text{ext, pert}} \neq 0\]

angular momentum exchange between perturbations and the background disk
Can $T_{\text{ext}, \text{pert}}$ make perturbations grow?

Ignoring angular momentum fluxes,

$$\frac{\partial J_{\text{pert}}}{\partial t} \sim T_{\text{ext}, \text{pert}}.$$

- May have an unstable situation if $T_{\text{ext}, \text{pert}}$ is the same sign as J_{pert}
- Possible for low-frequency disturbances in a disk with temperature decreasing outwards (both torque and angular momemtum are negative)
- Low-frequency: $\delta \Sigma \sim e^{i\omega t}$ and $|\omega| \ll m\Omega$.

low-frequency disturbances in a disk with temperature decreasing outwards
Numerical demonstration

2D, self-gravitating disk with radial structure
Numerical demonstration

2D, self-gravitating disk with radial structure

FARGO simulations:
Angular momentum exchange between the background disk and the spiral:
Extracting angular momentum from the spiral:

\[T_{\text{ext,pert}} \text{ in action} \]

\[m=1 \]

\[\frac{10^7 \text{(Torque)}}{J_{\text{ref}} \Omega_k(R_0)} \]

\[\text{d}J_{\text{lin}}/\text{d}t \]

\[\text{Torque due to } \frac{dc_s^2}{\text{d}R} \]
Dependence on the imposed temperature gradient

Fixed sound-speed profile $c_s^2 \propto r^{-q}$.
Three-dimensional simulations

Repeat experiment in 3D

- ZEUS: finite difference, discretized Poisson
- PLUTO: Godunov, Poisson through spherical harmonics
- ZEUS results off-set because of numerical issues at boundary

No growth without imposed temperature gradient
Locally isothermal disks are weird: forcing a temperature gradient permit disturbances to exchange angular momentum with the disk

- Application to protoplanetary disks uncertain
- Be star disks?
- Need to develop a more rigorous theory
Three-dimensional locally isothermal disks are baroclinic

If

\[T = T(R) \propto c_s^2 \]

Then

\[R \frac{\partial \Omega^2}{\partial z} = - \frac{\partial \ln \rho}{\partial z} \frac{dc_s^2}{dR} \neq 0 \]

- This *vertical shear* may render the disk unstable
Three-dimensional locally isothermal disks are baroclinic

If

\[T = T(R) \propto c_s^2 \]

Then

\[R \frac{\partial \Omega^2}{\partial z} = - \frac{\partial \ln \rho}{\partial z} \frac{dc_s^2}{dR} \neq 0 \]

- This vertical shear may render the disk unstable

Axisymmetric simulations by Nelson et al. (2013)
Vertical shear instability requires fast thermal relaxation
Otherwise buoyancy prevents vertical motion

Simulations from Nelson et al. (2013) with
\[
\frac{\partial T}{\partial t} = - \frac{T - T_{\text{init}}}{T_{\text{Relax}} P_{\text{orb}}}.
\]
What is ‘fast’ for VSI?

(Lin & Youdin, in prep.)

- $T_{\text{Relax}} = \beta \Omega^{-1}$
- Applied to Minimum Mass Solar Nebulae
Magnetized massive disks

Example 1: protostellar disk formation

Non-ideal MHD plus self-gravity simulation from Inutsuka et al. (2010)
Magnetized massive disks

Example 2: ‘dead zones’ and layered accretion in protoplanetary disks

(Terquem, 2008)

- Can you have a self-gravitating midplane plus MHD turbulent upper/lower layers?
Previous work

- Self-gravitating
 - gravitational instability (GI)
- Magnetized
 - magneto-rotational instability (MRI)

- Fromang et al. (2004)
 - latest dedicated simulations

Also

- Lizano et al. (2010)
 - flat disk model (no MRI): effect of field on GI
MRI plus GI from scratch

Linear model:
- Axisymmetric shearing box
- Self-gravitating
- Magnetized, initially uniform (both B_z and B_y allowed)
- Isothermal or polytropic
- Ohmic resistivity, can be non-uniform

Questions for adding SG to a magnetized disk:
- Are MRI growth rates affected?
- Is ‘layered’ structure possible (GI at the midplane, MRI at top and bottom)?
- Can SG enhance density perturbations from MRI?

(Lin, 2014)
Upper limit on the field strength for MRI in a massive disk

\[Q = \frac{\Omega^2}{4\pi G \rho_0} \]
small \(Q \rightarrow \) strong self-gravity

\[\beta = \frac{c_s^2}{v_{A0}^2} \]
small \(\beta \rightarrow \) strong field

\[\Lambda_0 = \frac{v_{A0}^2}{\eta_0 \Omega} \]
small \(\Lambda_0 \rightarrow \) strong resistivity
Upper limit on the field strength for MRI in a massive disk

Ideal MHD, polytropic disk ($P \propto \rho^2$), vertical field, need

$$\frac{B_z}{c_s \Omega} \sqrt{\frac{\pi G}{\mu_0}} \ll \sqrt{\frac{15}{16}}$$

to get MRI in strongly self-gravitating disks.
Is there a layered MRI-GI mode?

\[Q = 0.20, \beta = 100.0, \log \Lambda_0 = -1.0, k_x H = 1.34, \gamma = 0.25 \Omega \]

- magnetic
- gravity
- kinetic
- thermal
Enhancing MRI density perturbations

- No self-gravity
- Small thermal/density perturbation
- With self-gravity
- Large thermal/density perturbation
How SG affects MRI depends on symmetry

gravity-dominated, magnetic-dominated

- MRI can be symmetric or anti-symmetric across $z = 0$
- GI can only be symmetric
Summary and future directions

- MRI-GI interaction requires them to have similar scales
 → need weak MRI so its vertical lengthscale $\sim H$ (cf. Fromang et al., 2004)
- Next step: non-axisymmetric perturbations

Eventual goal:
- Full MHD simulations of self-gravitating disks
- Questions:
 angular momentum transport, effect of MRI turbulence on disk fragmentation
Summary and future directions

- MRI-GI interaction requires them to have similar scales
 → need weak MRI so its vertical lengthscale $\sim H$ (cf. Fromang et al., 2004)
- Next step: non-axisymmetric perturbations

Eventual goal:
- Full MHD simulations of self-gravitating disks
- Questions:
 angular momentum transport, effect of MRI turbulence on disk fragmentation

For fun: ‘avoided crossing’ between MRI and GI?

![Graph showing the relationship between k_sH and Q/Q_0](image)
The vortex instability in non-isothermal disks

(2014 CITA summer student program)

(Les & Lin, 2015, submitted)

- $\beta \ll 1$: fast cooling (isothermal), $\beta \gg 1$: slow cooling (adiabatic)
- There is an optimal cooling rate to maximize vortex lifetime
References

