Linear vertical shear instability in protoplanetary disks

Min-Kai Lin
minkailin@email.arizona.edu
https://lavinia.as.arizona.edu/~minkailin/

Steward Theory Fellow
University of Arizona

September 30 2015
Outline

1. Results
2. Isothermal linear theory
3. Linear theory with finite cooling
4. Numerical calculations
5. Application to the MMSN
Thermodynamic condition for the VSI

- Astrophysical disks generally have $\partial_z \Omega \neq 0$ — necessary for VSI, but also need rapid cooling.

(Nelson et al., 2013)

Can we quantify this requirement?
Lin-Youdin VSI condition

\[t_{\text{cool}} \Omega_K < \frac{h|q|}{\gamma - 1} \equiv \beta_{\text{crit}} \]

(Vertically isothermal disk with \(T \propto r^q \), \(h \equiv H/r \), and \(t_{\text{cool}} = \beta/\Omega_K \).)

(Lin & Youdin, 2015)
Rapid cooling needed because of buoyancy
Vertical motion associated with VSI is opposed by buoyancy forces

\[\frac{r\partial_z \Omega}{N_z} \]

destabilizing vert. shear

v.s.

stabilizing vert. buoyancy

Vertical shear is weak, \[r\partial_z \ln \Omega \sim O(h) \ll 1 \], so need \(l_z/l_r \gg 1 \)

Vertical buoyancy is strong, \[N_z/\Omega \sim O(1) \]
Linear theory: previous analyses and our contribution

- Vertically and radially local, with energy equation
 (Urpin & Brandenburg, 1998; Urpin, 2003; G. Mohandas)

- Vertically global, radially local, no buoyancy
 (Nelson et al., 2013; McNally & Pessah, 2014; Barker & Latter, 2015)

- Vertically and radially global, no buoyancy
 (Barker & Latter, 2015; Umurhan et al., 2015)

Lin & Youdin (2015)

- Vertically global, radially local, including energy equation (i.e. with buoyancy)
- Both constant cooling and realistic cooling functions
Isothermal limit (instantaneous cooling)

Linearized fluid equations →

\[0 = W'' + \left[\ln \rho' - \frac{iK}{(1 - \nu^2)\Omega_K^2 h} \frac{d\Omega^2}{dz} \right] W' + \nu^2 \left(1 + \frac{K^2}{1 - \nu^2} \right) W. \]

\[K = k_x H, \quad \nu = \omega / \Omega_K. \]

- **Formal**\(^1\) limit on the growth rate of low-frequency modes

\[\sigma < \max \left| r \frac{d\Omega}{dz} \right| \]

(Unbound if approximating vertical shear \(\propto z\))

- General frequency waves in a thin-disk **without a surface**

\[\nu^4 - (L + 1 + K^2) \nu^2 + L (1 + ihqK) = 0, \quad L = 1, 2 \cdots \]

VSI is the low-frequency (inertial) branch.

\(^1\)Via Cauchy-Schwarz inequality...etc.
Linear theory with finite cooling

- Parameterized cooling: $t_{\text{cool}} \Omega_K \equiv \beta = \text{const.}$

Single ODE reduced model (low-freq., thin-disk, no explicit $\partial_r P$)

$$0 = \delta v_z''(z) - zA \delta v_z'(z) + (B - Cz^2) \delta v_z(z).$$
Linear theory with finite cooling

- Parameterized cooling: $t_{\text{cool}} \Omega_K \equiv \beta = \text{const.}$

Single ODE reduced model (low-freq., thin-disk, no explicit $\partial_r P$)

$$0 = \delta v_z''(z) - zA \delta v_z'(z) + (B - Cz^2) \delta v_z(z).$$

- Transformation \rightarrow Hermite ODE (as before)
- As in Lubow & Pringle (1993) but A, B, C now complex because $\partial_z \Omega \neq 0$
- Important: reduced model is only valid for $t_{\text{cool}} \Omega_K \lesssim O(1)$ (OK for VSI)
Linear theory with finite cooling

- Parameterized cooling: \(t_{\text{cool}} \Omega_k \equiv \beta = \text{const.} \)

Single ODE reduced model (low-freq., thin-disk, no explicit \(\partial_r P \))

\[
0 = \delta v_z''(z) - zA\delta v_z'(z) + (B - Cz^2) \delta v_z(z).
\]

- Finite K.E. density as \(|z| \to \infty \Rightarrow \) dispersion relation \(\omega = \omega(k_x; \beta, M) \)
- Mode number \(M = 0, 1, 2 \ldots \)
- Fundamental mode \(M = 0 \) has special importance

![Graph](image-url)
Critical cooling time

- Assume $\beta = \beta_c$ at marginal stability ($\sigma = 0$) and large k_x

Find

$$\frac{\partial \beta_c}{\partial M} < 0$$

(if the disk is sufficiently thin). Then $M = 0$ has the longest critical cooling time.

The fundamental mode is the most difficult to stabilize with increasing t_{cool}.
Critical cooling time

- Assume $\beta = \beta_c$ at marginal stability ($\sigma = 0$) and large k_x

Find

$$\frac{\partial \beta_c}{\partial M} < 0$$

(if the disk is sufficiently thin). Then $M = 0$ has the longest critical cooling time.

The fundamental mode is the most difficult to stabilize with increasing t_{cool}.

So condition for VSI is

$$t_{\text{cool}} \Omega_K < \beta_c(M = 0) = \frac{h|q|}{\gamma - 1}$$

- $h|q|$: vertical shear (destabilizing)
- $\gamma - 1$: vertical buoyancy (stabilizing)
Numerical calculations

- Solve linearized equation in the radially local approx.
- Relax all other assumptions in reduced model

Theory describes the lowest order modes inc. fundamental mode
- ‘Surface modes’ are entirely due to disk surface (imposed or physical)
Effect of increasing the cooling time

\[\frac{\sigma}{(\hbar \Omega_K)} \]

\[-\frac{\omega}{(\hbar \Omega_K)} \]

- \(k_x H = 10, \ z_{\text{max}} = 5H \)
- \(\beta = 0.01 \)
- \(\beta = 0.03 \)
- \(\beta = 0.05 \)
- \(\beta = 0.10 \)
- \(M = 0, \text{analytic} \)
- \(M = 1, \text{analytic} \)
- \(M = 2, \text{analytic} \)
- \(M = 3, \text{analytic} \)

M-K. Lin, A. Youdin (Arizona)
Testing the critical cooling timescale

\[t_{\text{cool}} \Omega_K < \frac{h|q|}{\gamma - 1} \]

Max. growth rate in \(h\Omega_{\text{Kep}} \) vs. Dimensionless cooling time \(\beta \)

- \(k_x H = 100 \)
- \(k_x H = 50 \)
- \(k_x H = 30 \)
- \(k_x H = 10 \)
- \(k_x H = 5 \)
- \(k_x H = 1 \)
Testing the critical cooling timescale

\[t_{\text{cool}} \Omega_K < \frac{h|q|}{\gamma - 1} \]
Application to protoplanetary disks

Estimate cooling times in the Minimum Mass Solar Nebula (Chiang & Youdin, 2010) based on dust opacity ($\propto T^2$):

$$t_{\text{cool}} \Omega_K \equiv \beta(z; r, K) = 3.9 \times 10^{-3} \frac{r_{\text{AU}}^{9/14}}{\kappa_d} \left[1 + \frac{1.9 \times 10^7 \kappa_d^2}{r_{\text{AU}}^{33/7} K^2} \exp\left(-\frac{z^2}{2H^2} \right) \right]$$

- κ_d: opacity scale relative to MMSN
- Optically thin/Newtonian cooling for very small scales, fast for large κ_d
- Radiative diffusion for longer scales, fast for small κ_d
- Vert. dependence through ρ
Application to protoplanetary disks

Estimate cooling times in the Minimum Mass Solar Nebula (Chiang & Youdin, 2010) based on dust opacity ($\propto T^2$):
β versus β_{crit}

$$\beta = t_c \Omega_K$$

MMSN opacity, $z=0$

- β_{crit}
- $\beta, k_x H=1$
- $\beta, k_x H=10$
- $\beta, k_x H=100$

r/AU

β versus β_{crit}
\[\beta \text{ versus } \beta_{\text{crit}} \]

\[\beta = t_c \Omega K \]

0.1×MMSN opacity, z=0
β versus β_{crit}

MMSN opacity, $z=0$

$\beta = t_c \Omega_K$

- β_{crit}
- $\beta, k_x H=1$
- $\beta, k_x H=10$
- $\beta, k_x H=100$

r/AU
VSI in the solar nebula

With $\beta = \beta(z; r, K)$
Further applications and extensions

- Use β_{crit} as a simple, first ‘go to’ criteria to assess stability against VSI.
- Enroll β_{crit} in 1D accretion models, e.g. $\alpha_{\text{VSI}}(t_{\text{cool}}, \beta_{\text{crit}})$. (Cf. GI stress from Toomre parameter.)
Further applications and extensions

- Use β_{crit} as a simple, first ‘go to’ criteria to assess stability against VSI
- Enroll β_{crit} in 1D accretion models, e.g. $\alpha_{\text{VSI}}(t_{\text{cool}}, \beta_{\text{crit}})$. (Cf. GI stress from Toomre parameter.)

- Radially-global problem (with O. Umurhan)
- Non-axisymmetric problem
- Other instabilities are supported in the current model, e.g. convective overstability (Klahr & Hubbard, 2014; Lyra, 2014)
Conclusions

Lin-Youdin criterion

\[t_{\text{cool}} \Omega_K < \frac{h|q|}{\gamma - 1} \]

- Astrophysical disks generally have \(\partial_z \Omega \neq 0 \)
- Thin PPDs are unstable if buoyancy ineffective:
 \(N_z = 0 \) and/or \(t_{\text{cool}} \Omega_K \ll 1 \)
- Fast cooling needed because vertical shear is weak but buoyancy is strong
- Thermodynamic requirement satisfied at 10s of AU in typical PPDs
References