# Hopes and challenges in modern planet formation

Min-Kai Lin

October 2022









#### A golden era of planet formation



(Image credit: <a href="https://exoplanets.nasa.gov/">https://exoplanets.nasa.gov/</a>)

#### Planets form in protoplanetary disks



## Real protoplanetary disks

(Andrews et al, 2018; Long et al 2018)



## Observations of planets in a disk



#### One planet, multiple scales



#### Dust in protoplanetary disks



## Vertical dust settling



#### Radial dust drift



# Streaming instability (Nesvorný et al., 2020)



#### The ideal SI

• disk is non-turbulent → Chen & Lin (2020)

• disk is unmagnetized → Lin & Hsu (2022) Hsu & Lin (2022)

## Streaming instability is easily killed by turbulence



## Can modern disk models help?



(e.g. Riols et al. 2020, Cui & Bai 2021)

## SI in accreting pressure bumps



# Azimuthal drift streaming instability



@UVa Hsu & Lin (2022)

#### Planets form somehow, so what's next?





Disk-planet model 2

But each observation requires many simulations

## Modeling planet gaps with artificial/convolutional NN



#### Estimating planet masses around HL Tau



Hydrodynamic simulations

(Dong et al. 2015, Dipierro et al. 2015, Jin et al. 2016)

$$M_p = 0.2 - 0.35 M_J, 0.17 - 0.27 M_J, 0.2 - 0.55 M_J$$

• Disk-Planet Neural Network (Auddy & Lin, 2020)

$$M_p = 0.24 M_J, 0.21 M_J, 0.2 M_J$$

#### Simulation caveats

- Focus on axisymmetric structures
- Planet on fixed orbits
- 2D disk

## Some observed disks are asymmetric

(van de Marel, et al. 2021)



## Can planets also explain them?



Vortex formation due to the "Rossby wave" instability

(Hammer, Lin, et al. 2021)

#### Migrating planets in dusty disks

 $Z = 0.5, St = 3 \times 10^{-2},$  0 orbits



#### Three-dimensional models



## Puffed up rings in observations: Sign of planets?



Doi & Kataoka (2021)

#### Summary

- We are in a golden age for planetary sciences
- The streaming instability is the leading theory for planetesimal formation
- Modern disk models may challenge the SI or provide new pathways to planetesimal formation
- Planet-disk interaction can potentially reveal or rule out hidden planets in observations of protoplanetary disks

Thank you **Solution Color Mank Color Man**