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ABSTRACT

Protoplanetary discs (PPDs) can host a number of instabilities that may partake directly or indirectly in the process of planetesimal
formation. These include the vertical shear instability (VSI), convective overstability (COS), streaming instability (SI), and dust
settling instability (DSI), to name a few. Notably, the VSI and COS have mostly been studied in purely gaseous discs, while
the SI and DSI have only been analysed in isothermal discs. How these instabilities operate under more general conditions
is therefore unclear. To this end, we devise a local model of a PPD describing a non-isothermal gas interacting with a single
species of dust via drag forces. Using this, we find that dust drag sets minimum length-scales below which the VST and COS are
suppressed. Similarly, we find that the SI can be suppressed on sufficiently small scales by the gas’ radial buoyancy if it cools on
roughly a dynamical time-scale. We show that the DSI can be effectively stabilized by vertical buoyancy, except at special radial
and vertical length-scales. We also find novel instabilities unique to a dusty, non-isothermal gas. These result in a dusty analogue
of the COS that operates in slowly cooled discs, and a dusty version of the VSI that is strongly enhanced by dust settling. We

briefly discuss the possible implications of our results on planetesimal formation.
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1 INTRODUCTION

Dust plays an important role in various processes taking place in
PPDs. Planetesimals, the building blocks of planets, are believed
to consist to a large extent of originally micron-sized dust grains,
which first coagulated with one another to form mm-sized particles,
and subsequently clumped together and underwent self-gravitational
collapse to form km-sized planetesimals (Chiang & Youdin 2010;
Johansen et al. 2014; Drazkowska et al. 2022; Lesur et al. 2022).

For almost two decades now, the most viable mechanism for
producing large enough dust-to-gas ratios in young PPDs, which
can result in self-gravitational collapse, is considered to be the
Streaming Instability [SI: (Johansen, Youdin & Mac Low 009a;
Youdin & Goodman 2005; Johansen & Youdin 2007; Youdin &
Johansen 2007)]. For the SI to be sufficiently efficient, however, it
already requires concentrations of dust, essentially in the disc mid-
plane, which are larger than what is expected in young, newly formed
PPDs. The local dust-to-gas ratio can be raised, for example by dust
settling (Nakagawa, Sekiya & Hayashi 1986; Dubrulle, Morfill &
Sterzik 1995; Takeuchi & Lin 2002) or trapping by pressure bumps
(Haghighipour & Boss 2003a, 2003b; Taki, Fujimoto & Ida 2016;
Onishi & Sekiya 2017; Huang et al. 2020).

One of the main processes opposing dust concentration in the
mid-plane of PPDs is assumed to be turbulence. As PPDs are
poorly ionized, the magneto-rotational-instability [MRI: (Balbus &
Hawley 1991)] is likely suppressed in most regions (Lesur 2020).
This circumstance has led to the discovery of a number of purely
hydrodynamic instabilities, capable of driving weak to moderate
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levels of turbulence (Lesur et al. 2022). While the corresponding tur-
bulent angular momentum transport of these instabilities is unlikely
sufficient to explain observed accretion rates, it can play an important
role in the process of dust concentration.

Among the many possible instabilities that may in principle exist
in PPDs, three have been found to be potentially relevant in driving
hydrodynamic turbulence. These are the Vertical Shear Instability
(VSD (Urpin & Brandenburg 1998; Urpin 2003; Nelson, Gressel &
Umurhan 2013; Barker & Latter 2015; Lin & Youdin 2015)], which
requires vertical differential rotation, as well as rapid cooling of the
gas; the Convective Overstability [COS: (Klahr & Hubbard 2014;
Lyra 2014; Latter 2016)], which requires an unstable radial entropy
gradient coupled with a cooling time comparable to the orbital
time scale; and the Zombie Vortex Instability (Marcus et al. 2015;
Lesur & Latter 2016; Barranco, Pei & Marcus 2018), which requires
slow cooling and a strong stable vertical entropy gradient. For the
process of planetesimal formation, these instabilities are particularly
interesting due to their ability to form large-scale zonal flows, as well
as large-scale vortices. While the former is a possible explanation
for the presence of dust rings, the latter is a possible explanation for
non-axisymmetric dust concentrations in PPDs (van der Marel et al.
2021; Bae et al. 2022; Lesur et al. 2022).

As stated above, which of the aforementioned hydrodynamic
instabilities operate depends critically on the gas’ cooling time-
scale. This, in turn, is largely controlled by the distribution of
small dust grains tightly coupled to the gas (Malygin et al. 2017;
Barranco et al. 2018; Pfeil & Klahr 2019; Fukuhara, Okuzumi &
Ono 2021). Calculations of the gas cooling time scale across the
radial and vertical extent of a PPD by these authors revealed
that different hydrodynamic instabilities may be active in different
regions, and also different epochs. However, the results are largely
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model-dependent and details differ between the studies. Thus, for
the time being, the cooling time scale of gas in PPDs remains
uncertain. Nevertheless, these estimates suggest that one or more of
the aforementioned instabilities are likely active in planet-forming
regions of the disc.

Indeed, radiative hydrodynamic simulations have shown that the
VSI operates in the outer tens of au in PPDs (Stoll & Kley 2014,
2016; Flock et al. 2017, 2020). These authors included to some
extent the role of dust in gas thermodynamics, by solving for the
balance between stellar irradiation and radiation transport including
dust opacities. They also modelled large grains as passive tracers,
which can be effectively stirred up by VSI-turbulence. This ‘puff up’
has direct observational implications (Dullemond et al. 2022).

Furthermore, dust also has dynamic feedback onto the gas. For
example, the VSI is weakened by dust-induced buoyancy (Lin &
Youdin 2017), which allows dust grains — if sufficiently abundant —
to settle against VSI stirring (Lin 2019; Lehmann & Lin 2022). This is
consistent with analyses of the VSI with dust grains perfectly coupled
to the gas (Lin & Youdin 2015, 2017). The COS has been simulated
with dust feedback (Raettig, Klahr & Lyra 2015; Lyra, Raettig &
Klahr 2018; Raettig, Lyra & Klahr 2021), but these simulations
focus on dust-trapping by large-scale vortices that are formed by the
nonlinear evolution of the COS. How dust dynamically affects the
COS mechanism itself, remains unexplored.

When dust and gas are imperfectly coupled, an entire class of drag
instabilities becomes possible. The prime example here is the SI
mentioned above. The classical SI of Youdin & GoodmanYoudin &
Goodman is powered by the relative radial drift between dust and
gas, itself due to the disc’s radial pressure gradient. Recently, there
have also been several generalizations of the SI: the Dust Settling
Instability [DSI: Squire & Hopkins (2018); Krapp et al. (2020)],
which is powered by the dust settling; the Vertically Shearing SI (Lin
2021), powered by the vertical gradient in the mid-plane dust layer’s
rotation velocity; and the Azimuthal-drift SI (Lin & Hsu 2022),
powered by the azimuthal velocity difference between dust and gas
when the latter is torqued within the disc plane. However, these drag
instabilities have only been studied assuming an isothermal gas,
which can be considered to cool instantaneously such that buoyancy
effects are absent. Thus, the effect of finite cooling time-scales and
buoyancy forces on known dusty-gas instabilities is largely unknown.

Motivated by the above considerations, in this study we formulate
a local hydrodynamic model for a non-isothermal gas interacting
with dust. We apply a two-fluid formulation that self-consistently
describes the dynamical impact of dust onto the gas and vice versa.
The gas is subject to optically thin cooling, which is adopted as it
provides a simple means to shift between the isothermal and adiabatic
regimes. The cooling time scale is an input parameter in our model,
thus ignoring the effect of dust on the gas thermodynamics. This is
expected to be a minor shortcoming though, as it is the small grains
that largely control the gas cooling, whereas it is the larger grains (as
considered here) that impose dynamical effects onto the gas.

We utilize our model to perform linear stability analyses of a
number of local instabilities as described above. Specifically, we
will study the effect of dust on the COS and the VSI. Moreover, we
will investigate the impact of cooling and buoyancy on the SI and
the DSI. While we find the classical COS to be damped by dust, we
discover a dust-induced variant of the COS which operates at large
cooling times, and which co-exists with the SI, possibly exceeding
the SI’s growth rates.

Furthermore, while the SI turns out to be unaffected by radial
buoyancy for most values of the gas cooling time, we find that it can
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be substantially suppressed on sufficiently short length-scales if the
cooling time is comparable to the orbital time scale.

Similarly, while the VSI turns out to be damped by dust sufficiently
close to the disc mid-plane, farther away, we discover a new instabil-
ity that combines vertical shear and dust-settling to become a combi-
nation of the VSI and the DSI, with growth rates possibly exceeding
those of the latter instabilities. Finally, we find the DSI to be pro-
gressively suppressed with increasing gas cooling times on all scales
apart from a narrow band of ‘resonant’ modes in wavenumber space.

The paper is structured as follows. In Section 2 we introduce our
hydrodynamic model of dust and gas. Here we first discuss briefly
important properties of the global disc structure, before we focus on
a local description and present the set of linearized equations that
will be used in our analyses. Subsequently we derive values for all
the parameters that define our local linear model and we briefly
introduce diagnostic techniques applied in our analyses. In Section
3 we provide a short introduction of the linear instabilities that we
study in this paper with connections to previous works. In Section 4
we present our analysis of the COS and the SI and in Section 5 our
analysis of the DSI and the VSI. Finally, in Section 6 we discuss the
potential relevance of our findings to planetesimal formation PPDs,
and we summarize in Section 7.

2 HYDRODYNAMIC MODEL

We consider a three-dimensional (3D) PPD comprised of gas and dust
orbiting a central star of mass M,. We adopt cylindrical coordinates
(r, ¢, z), centered on the star. Disc self-gravity, viscosity, and
magnetic fields are neglected. We will eventually adopt a local
description of the disc defined by a number of parameters related to
the global disc. To anchor our local model, and by way of introducing
notation, we first describe the global gas disc in the absence of
dust. In this limit, the disc admits exact, steady state, axisymmetric
equilibria with density, pressure, and velocity fields p,(r, z), P(r, 2),
and Vg = (0, r2,, 0), respectively, where ,(r, z) is the gas rotation
profile. These are set by centrifugal balance and vertical hydrostatic
equilibrium. Explicit profiles are given in Section 2.6.
We define

1 opP
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as a dimensionless measure of the global radial pressure gradient,
where

GM,

QK = r3 (2)

is the local Keplerian frequency and G is the gravitational constant.
The global radial pressure gradient drives the SI and 5 features
prominently in studies of the SI. Typically,  ~ A%, where the disc
aspect ratio h = H/r <« 1 and H is the disc scale-height, formally
defined via

1 1 |0p,

= az
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PPDs are generally baroclinic with Vp, x VP # 0. In these cases,
the disc exhibits vertical shear with 9,2, # 0. We therefore define
r 0,
q: = 5~
Q, 0z

(C))
as a dimensionless measure of the vertical shear rate. The parameter

q. appears in local models of the VSI. In PPDs, vertical shear is
typically weak with |g,| < & within the disc bulk.
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We shall also be concerned with buoyancy effects, which are
measured by the radial and vertical buoyancy frequencies N, and
N, defined via

N2 = _LaﬁPE’ 3)
" ypg Or Or

N2 = LaﬁPE (6)
¢ yp, 9z 07’

where y is the gas’ adiabatic index and
P

S=Iln—
oF

@)
is the gas’ (dimensionless) entropy. In typical disc regions |N?| ~
h*Q% . The value of N, f depends on the distance z away from the disc
mid-plane. At |z| ~ H one finds N2 ~ Q.

It is also convenient to define the characteristic entropy length-
scales H, and H, via (Latter & Papaloizou 2017)

1 108

= , 8
» yor ®
110§ ©
H, —y oz

Then H, N}, = —p;'0,.P. Typically |H,| ~ rand |H.| ~ H <
r in radially smooth, vertically thin discs. However, in general, the
length-scales (8) and (9) can by definition take positive and negative
values. In this paper, we consider only discs that are convectively
stable in the vertical direction, i.e. we assume sz > (. This implies
H, < 0 below the mid-plane (since 9, P > O there). On the other
hand, N? can be positive or negative. Specifically, if 3, P < 0, which
is typical for PPDs, then a negative radial entropy gradient (H, < 0)
can yield Nf < 0 and drive the COS (see Section 3.1.1). More on
these quantities follows in Section 2.6.

2.1 Local description

We focus on local dynamics with characteristic length-scales A < r
and adopt the ‘shearing box’ framework to model a small patch of
the disc (Goldreich & Lynden-Bell 1965). The box is centered on
a fiducial point (rg, ¢o — Q0tf, —z0), that rotates around the star at
approximately the local Keplerian frequency 2 &~ Qx(rp). At the
disc mid-plane 2y co-incides exactly with Qk(ry), whereas for zg >
0 small deviations on the order (zo/ry)? occur due to vertical stellar
gravity. In our convention, the shearing box is placed below the mid-
plane, such that zo > 0, without loss of generality. The parameters
defined above are assumed to be constant in the box and equal to
their equilibrium, dust-free values at » = ry, z = —z¢ in the global
disc. We introduce local Cartesian coordinates (x, y, z) with unit
vectors €, Ey, €, in the box corresponding to the radial, azimuthal,
and vertical directions in the global disc.

2.1.1 Governing equations: gas

In this paper, we consider instabilities that are incompressible in the
gas’ motions. However, they may involve perturbations in the gas
entropy or temperature in order to operate, which translates to weak
density perturbations in accordance with the ideal gas law. Therefore
we adopt the Boussinesq shearing box model of Latter & Papaloizou
(2017) to describe the gas. The governing equations read

Vv, =0, (10)
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0 . = 1 1
(a + Vg - V) 30y = Pgo <Fr5ug + ESwg) + A.. (12)
The first two equations are the incompressibility condition and the
momentum equation, respectively. The gas velocity field is v, =
(ug, vy, wy). The gas has a constant background density g with
density perturbations §p, from the background. Similarly, §P and
8V, denote pressure and velocity perturbations from equilibrium,
respectively. Equation (12) corresponds to the gas entropy equation in
the Boussinesq approximation, such that entropy perturbations are
directly related to density perturbations, i.e. 8§ = —(804/040), and
the gas temperature perturbation 67 = —(80,/040)T0, Where Ty is the
equilibrium temperature. Furthermore, the gas is subject to optically
thin cooling on a time scale 7., described through

1
Ae=—=3p, (13)
L
in the entropy equation, where we absorbed y into the cooling time
for notational convenience. In what follows we will work with the
dimensionless cooling time

B = 1. (14)

Our local model incorporates several effects from the global disc.
The gas’ offset from pure Keplerian rotation, due to the global radial
pressure gradient, is (as in numerous other studies) modelled via the
constant radial forcing term o 7. Furthermore, vertical shear appears
as the forcing term o ¢,z, which leads to a linear shear flow in z (see
Section 2.2). The terms o< N? and o Nf in equation (11) represent
radial and vertical buoyancy, respectively, which require gas density
perturbations to take effect. This, in turn, requires a non-isothermal
gas with 7. > 0.

In passing we note that in the case of a disc with entropy
stratifiction only in the radial or the vertical direction, it is common
practice to replace the gas density perturbation 8 p, with a ‘buoyancy
variable’ oc¢ H,8p, or o« H.8p,, respectively. In that case the
stratification length no longer appears in the equations. However,
since we will consider stratifications in single, as well as both
directions in our analyses below, we will — for clarity — not follow
this practice.

Finally, the terms o € and « € in equation (11) are associated
with feedback from the dust, described next.

2.1.2 Governing equations: dust

We model a single species of dust grains coupled to the gas via
a drag force characterized by a constant particle stopping time #,,
which corresponds to a Stokes number

T =1,$. (15)

We assume small dust grains with T < 1, such that the dust is tightly
coupled to the gas and may be described as a second, pressureless
fluid (Jacquet, Balbus & Latter 2011).
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The dust component is governed by the set of fluid equations

0 L. = >
<a+vd-V) pa=—pi (V:54). (16)

0 - =)\ - - - 3 -
<a + vy - V) Vg = —29062 X |:Vd — (—EQOX + qZZQ()) ey]
- |
+ZOQ(2)ez + ? (Vg - Vd) ) (17)

where py and V4 = (uy, vg, w,) are the dust density and velocity,
respectively. Unlike gas, dust is compressible and it is assumed that
dust-related pressure can be neglected. Therefore, the dust fluid does
not have an energy equation. However, the dust indirectly (via drag)
experiences the gas’ radial pressure gradient and buoyancy forces.
We define

s (18)

Pg0

as the local dust-to-gas ratio, which for a Boussinesq gas is equivalent
to the (scaled) dust density. The equilibrium dust-to-gas ratio is €.

At general heights zo # 0, dust is expected to settle towards
the disc mid-plane. Following Krapp et al. (2020), we model this
background settling by applying a constant vertical gravitational
acceleration z Q% to the dust. Since, as outlined above, we assume
that the shearing box is placed at a distance zo > 0 below the disc
mid-plane, dust experiences a vertically upwards acceleration. A
corresponding downwards vertical acceleration,—¢€(zo Qg, is applied
to the gas [equation (11)] by hand so that a steady equilibrium state
can be defined.

Note that we use the same parameter ¢, to impose the same vertical
shear rate for the dust as for the gas. This is because small grains
tightly coupled to the gas are expected to possess the same rotation
profile to a good approximation (Lin 2021).

Furthermore, our local model neglects vertical dust stratification,
which naturally occurs away from the mid-plane in PPDs as dust
settles to the mid-plane. The related vertical gradient in the dust
density is known to produce a vertical buoyancy, and this dusty
buoyancy has been found to stabilize vertical motions (Lin & Youdin
2017) and is expected to dominate gas-related buoyancy sufficiently
close to the mid-plane z¢o < Hj.

In addition to our two-fluid description outlined above, we will
also make use of a one-fluid description of dust and gas (Laibe &
Price 2014; Lin & Youdin 2017; Lovascio & Paardekooper 2019).
The corresponding equations are presented in Appendix A.

2.1.3 Remarks

What distinguishes the ‘Boussinesq’ shearing box model applied
here from a general compressible local model are the assumptions
that the length-scale of the phenomena under investigation A < H.,
H, (rather than only A < ry), that the flow is strongly subsonic
((Wg much smaller than the sound speed), and that the fractional
perturbations of the gas density §p,/pq0 < 1 and the gas pressure
SP/P < 1, but with §0,/pg > SP/P. The latter assumption allows
for gas buoyancy effects to enter the model (see Latter & Papaloizou
2017 for details). It should be noted that the background pressure
gradient 7 formally vanishes in the expansion performed in Latter &
Papaloizou (2017, their section 3.2) to obtain (11). That is, for the
gas in isolation it is negligible. However, in combination with dust
it can result in the SI and the DSI, as studied here. As we will
see below, our model successfully reproduces previous results on
the pure gas instabilities COS (Lyra 2014; Latter 2016) and VSI
(Latter & Papaloizou 2018), as well as the dust—gas drag instabilities

Instabilities in protoplanetary discs ~ 5895

SI (Youdin & Goodman 2005) and DSI (Squire & Hopkins 2018;
Krapp et al. 2020).

2.2 Equilibrium state

Equations(10)—(17) admit equilibrium solutions with constant p, and
8P = 3p, = 0. The equilibrium velocity fields can be written as

2
and similarly for V4, with
P 20t (nro — (1 + €0) g:20)

- 3 L
Vo0 = (— ~x+ qzz) Qoe, + V;,O, (19)

Qo, 20
< (I+€) + 72 ’ e
L (14+e+12)+ Eofzquos2 1)
0 (I +€0)? + 2 "
wly =0, (22)
and
2t(pro + (€o + €2 + 12) .2
Wy = — (nro ( 0 20 )q O)Qo, 23)
1+ €y + 12
(1 + €0) nro + 72¢.2
V= — AT T D, (24)
(IT+e) +7
W)y = 72082, (25)

which are constants. In the limit of ¢,, zo — 0, these coincide with
the standard solutions as derived in Nakagawa et al. (1986). For
clarity, hereafter we drop the primes with the understanding that the
equilibrium velocities are relative to the linear shear flow in x and
that in z as given by (19).

It is worth noting that in addition to the radial pressure gradient 1,
also vertical shear contributes to the radial and azimuthal velocities
for dust and gas, and causes the center of mass velocity [equation
(A2)] to attain a finite value. However, it should be kept in mind that
while in our local model ¢, and 7 are freely adjustable parameters, in
a global disc model both parameters depend on the radial temperature
profile of the disc (see Section 2.6 for details).

2.3 Conservation properties

Following Youdin & Johansen (2007), from (10)—(12) and (16)—(17)
we can derive conservation equations for the angular momentum
and the energy of the dust—gas mixture. For simplicity we assume
axisymmetry of the flow, and entropy stratification only in vertical
direction, i.e. N,.2 =0, I/Hr2 =0, sz > 0and H, < 0.

From the y-component of (11) and (17) we obtain the conservation
law for the angular momentum density £ = pgov, + p4Va:

3 . - - Q
LAV Fr=——Fp = q:0F (26)
ot 2

where

Fr = Pg0VeVg + PaVaVa, 27
]?p = pgoVe + PaVas (28)

are the angular momentum flux and mass flux, respectively.
For the equilibrium described by (20)—(25) we find that the right-
hand side of (26) vanishes, as well as
20?0k pyt’
A2
2 patTq: 2(1 + €)(A? +217)
+ . e +

]:C,xz_

)

0 (rq2), (29)
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vk par ((L+ e+ 22g.2)

Fr.=— X , (30)
Fpr = —20x pata: 2, 31
ro
]:p,z = Vg pdTZ*Oa (32)
ro

where vg = Qorp and A = (1 + €9)* + 2. Compared to the model
applied in Youdin & Johansen (2007), our model incorporates vertical
settling and vertical shear. For zo = 0 we recover Equation (18b) of
Youdin & Johansen (2007) for F ., while the other flux components
vanish identically. For zo > 0 (i.e. below the mid-plane) vertical
settling and vertical shear result in a flow of angular momentum
radially outward, and away from the mid-plane, and a related mass
flow directed radially inward and toward the mid-plane. Using  ~ h3
and g, ~ hozo/Hy (see Section 2.6), we find that the radial angular
momentum flux changes sign for zg = 7 Hp.

Furthermore, we can derive the conservation equation for energy,
which reads

o . - o~ .
55 + V- Fe = Earag — €005020%Wg + Paz0QWa

- 3
—Vg VP + EQO}—C,J( - qZQO}—C,z
N292
—Pg0 P (33)
where (Youdin & Johansen 2007; Latter & Papaloizou 2017)
1 . 1 1
€ = S pe0lVel” + 5 palVal® + 5 p0N26?, (34)
2 2 2
T 1 2 122 1 2 23 1 2922
Fe = Epg0|vg| Ve + Epd|vd| Va + EpgoNZH Ve, (35)
gdrag = _Iodli;g - lez/txv (36)
H,
0 = —6p,- 37)

Pg0

The interpretation of most terms is as described in Youdin & Johansen
(2007). Since the gas considered here is non-isothermal, we include
in addition the thermal energy oc 6% (Latter & Papaloizou 2017),
which prompts the thermal cooling term o 1/f. on the right hand
side of (33). At equilibrium, the right hand side of (33) vanishes.
Specifically, the energy released by vertical dust settling cancels
with the vertical contribution to the drag dissipation term Sdrag.

As was done in Latter & Papaloizou (2017), one can in addition
consider the conservation equation of vorticity. However, rather than
doing so, here we merely point out that drag forces and the radial
pressure gradient 7 do not enter the corresponding equation for the
total vorticity (ngV X Vg + pdV X V) of dust and gas.

2.4 Linear perturbation equations

To the equilibrium described in Section 2.2, we add wave-like,
axisymmetric perturbations of the form

{5pg, 512&,, 5P, (Spd, 51711}
= Re [{8pg1. 811, 8Py, 8par, Sttgy } - ' C ¥ (38)

(‘Re’ denoting the real part) with positive real radial and vertical
wavenumbers k, and k,, respectively, and generally complex fre-
quency

o =o0g+ioy,
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where oy is the real growth rate and o, is the real oscillation
frequency. The subscript 1 denotes complex perturbation amplitudes,
but will henceforth be dropped for clarity. In our analysis presented
below we will work with dimensionless quantities. Length will be
scaled with rg, time will be scaled with 1/€2 and densities will be
scaled with pg0.

Linearizing equations (10)—(12) and equations (16) and (17) with
respect to the above equilibrium and assuming equation (38) yields
the dimensionless perturbation equations for the gas:

. 1 I k1
odp, = — (zkxugo + E) dpg + (E [ ) dug, 39)

oduy = —ikcugoduy +28v, — ik, 8P — H,N5p,

€ 1
+?0 (8144 — 5L£g) + 5,0,1; (Md() — Mg()) s (40)
. 1 ke
08V, = —ikyugo Sy — 5~ qu Su,g
€0 1
+? (évd — Sl)g) + (S)Od; (UdO — vg0> s (41)
kx k% . 2
ak—(Sug = —lk—‘ugO(Sug + ik, 8P + H N 5pg
€ ky 1
-2 ((Swd + 45ug) — 8pa = wao, (42)
T k; T

and for the dust:
08pq = —I (kxttao + k;wa0) 8p4 — i€p (kydug + k dwy), (43)

1
(T(SMI] =—i (kxudO + kzwdo)abtd + 28Ud + - (8ug - Sud) B (44)
T

1 1
o08vg = —i (kyttgo + k;wa0) Svg — 55ud + = (8vy — Svy) (45)
T

—q;0wy,

1 ky
O'Swd = —i (kxu,{() + kzwdo)Swd + - <—kf~5blg — Swd) . (46)
T £4

where we used the linearized version of the incompressibility
condition (10):

k,
Swg = _ki

Z

S, 47

to eliminate the vertical gas velocity. Equations (40) and (42) can be
combined to obtain the pressure perturbation

SP = k2 (H,N}ke + H.N’k.) 8p, — 2k.8v,
kx - +k7 k k.
_ (Mdo Mgo) "wdoépd €0 €0 Swy |, (48)
T T

which contains contributions from buoyancy (the first bracket), radial
and vertical dust—gas drift (the third term), as well as dust—gas drag
(the last two terms). Equation (48) is plugged into equation (40) such
that the final set of perturbation equations (39)—(41) and (43)—(46)
are seven equations for seven unknowns.

Thus, the gas in isolation is characterized by the parameters g8, H,,
H,, N} N f and g,. On the other hand, the description of gas and dust
in co-existence requires in addition the parameters €, T and . Table 1
summarizes the most important parameters, scales, and definitions
that appear throughout the paper. Possible inter-dependencies of
these parameters and their connection to the global disc model are
described in Section 2.6. It should be noted that the aspect ratio hj is
not a parameter of our model, but is used to set the values of several
model parameters.
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Table 1. Important symbols and definitions. (*): ‘equ.’=equilibrium, ‘vel.’
=velocities, ‘pert.’=perturbation, ‘cms’ = center of mass.

Symbols Definitions

o complex eigenvalue of pert.*

k/z radial/vertical wavenumber of pert.*
k=/kZ+k2 total wavenumber of pert.*

Mx/z = k‘T/ scaled radial/vertical wavenumber of pert.*

B dimensionless gas cooling time

y gas’ adiabatic index

p density slope parameter of global disc

q temperature slope parameter of global disc
n dimensionless radial pressure gradient

Q

0 orbital reference frequency
70 reference disc radius
€0 equilibrium dust-to-gas density ratio
T particle Stokes number
N, rz/z squared radial/vertical buoyancy frequency
Hy. radial/vertical entropy stratification length
Hy vertical disc scale height
20 distance away from the disc mid-plane
ho = %’ disc aspect ratio
q: vertical shear parameter

poy kyx

9z = 4qz%, — %
Sug, Svg, Swq
dug, Svg, Swg

VSI threshold parameter
linear dust pert.* vel.*
linear gas pert.* vel.*

804, 8pg linear dust and gas pert.* densities
Su, Sv, Sw linear one-fluid pert.* vel.*
aq, x = kyltgo radial dust advection parameter

vertical dust advection parameter
radial gas advection parameter
dust equ.* vel.*

gas equ.” vel.*

ad,z = kzwqo
dg x = kx”g()
Uqo, Vdo, Wdo
Ug0, Vg0, Wgo

The perturbation equations for gas and dust can be written as
Mb = ob, (49)

where M is a 7 x 7 complex matrix and b= {Spg,Sug,Svg,

304, Sﬁd}r is a corresponding eigenvector. In the general case, we
solve this eigenvalue problem with standard packages in IDL.

2.5 Pseudo-energy decomposition

Following Ishitsu, Inutsuka & Sekiya (2009), we perform an energy
decomposition of the linearized two-fluid equations (39)—(46). This
technique has been proven to be a useful tool to better understand
linear instabilities in terms of their driving forces and damping
agents (see for instance Lin 2021; Lin & Hsu 2022). We therefore
multiply equations (40) and (41) with Suz and 45 v;‘, respectively, and
equations (44), (45), and (46) with du;, 45v}j, and dw}j, respectively.
We then add the results and take the real part to obtain the total
‘pseudo’-energy. !

Epseudo = |8ug|2 + 4|8vg|2 + |5wg|2
+ €0 (18ual® + 4|8v4]* + [Swal?)

4
=S E. (50)
i=1

where we used (47), and find

IThe factor 4 has been chosen as in Ishitsu et al. (2009) to eliminate the
contributions due to the epicyclic terms.
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Ey = —H,N}Re [8u,p}] — H.N?Re [sw,dp}] , (51)
E; = —4q; (Re [dw,8v}] + € Re [Swqdv}]) (52)
1
E; = - (Mdo — ugo) Re [SMg(Spj]
+4 (vao — vg0) Re [8v,8p]] + wao Re [Sw,dp}] |, (53)

E,= _%0 (18ug — Sugl” + 418va — 8v,|” + [Swyg — Sw,*),  (54)

x5

where indicates the complex conjugate of a quantity. In turn,
E|-E, are contributions due to buoyancy, vertical shear, dust—gas
drift, as well as dust—gas drag, respectively. Correspondingly, in our
analyses presented in Sections 4.1 and 5.1 we will refer to terms o<
€ (8¥4 — 8V,) as ‘drag force terms’, and to terms o 8pa (Vao — Vo)
as ‘dust—gas drift terms’.

2.6 Dimensionless parameters

Our local hydrodynamic model defined above is specified by a
number of (dimensionless) parameters. Here we briefly motivate the
choice of all parameter values used in our numerical calculations
below. We do this by evaluating these parameters at a fiducial
location (r = ry, z = —z0) in a given global disc model. In this
section, we use a ‘hat’ notation to indicate the dimensionless versions
of specific dimensional quantities defined above by adopting the
scaling as described in Section 2.4. For clarity, the ‘hats’ will,
as also done in Section 2.4, be dropped in the remainder of the
paper.
We consider locally isothermal equilibria with

P =cp,. (55)

where c; is a prescribed sound-speed profile. We assume radial power
law dependencies for sound-speed and the mid-plane gas density
profiles, while the vertical gas profile is Gaussian. That is,

q
A (r) o (i) , (56)
ro
p 2
%Oﬁ)m(i)em<—£f>, (57)
ro 2H2

where the temperature slope parameter ¢ is not to be confused with
the vertical shear parameter ¢,. Typically, p and ¢ are negative and
of order unity. Note that the vertical hydrostatic equilibrium of pure
gas, thin discs yields H = ¢,/Qk.

2.6.1 Global radial pressure gradient and vertical shear rates

Evaluating the radial pressure gradient parameter [equation (1)] using
the above profiles gives:

h2
n=—2((+q.
2
where
z(z) 0ln H

pEP+F§ dlnr |,

is the height-dependent, local radial gas density gradient. For radially
smooth discs, 1 is of order h(z). For simplicity, in this study, we set
n = h} when considering a non-zero radial pressure gradient. All
calculations in Section 4 are performed assuming a disc aspect ratio
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hy = 0.05. On the other hand, in Section 5 we use hg = +/1073,
to facilitate a better comparison with the results on the linear DSI
presented in Krapp et al. (2020).

The vertical shear rate for a locally isothermal, thin gas disc is
approximately

qho 2o
L. 58
q: 2 H (58)
This is obtained from the definition of ¢, [equation (4)] and
the exact expression r0.Q; = q(z/r)g (1 —|—z2/r2)73/2 (see

Lin & Youdin 2015, Equation 20). Thus |g.| < h¢ and is typ-
ically (for ¢ < 0) positive below the disc mid-plane. In prac-
tice, if vertical shear is considered, we adopt a positive value
q. = 0.05z0/Hy.

2.6.2 Buoyancy frequencies, entropy stratification lengths, and
cooling

We find from (5) using (7) and (55)—(57) the dimensionless radial
buoyancy frequency

N? = n3q* £ ). (59)
where

1) ]
FO=¢@+1)- (”y T withzzg. (60)

The quantity —ﬁf is also known as the Richardson number (Latter
2016). Since f(¢) ~ O (1), for smooth discs |1Vr2| ~ h%. Depending
on the values of p and g, ﬁrz can be positive or negative. At the
disc mid-plane (p = p), a rather flat radial density profile is needed
to make 1/\}3 < 0, which is required for the COS. However, away
from the mid-plane, |p| can be reduced on account of the disc

flaring. In all cases with a negative value we use ﬁf = —0.01.
In some calculations in Section 4.4 we use a positive value
N2 =0.05.
The radial entropy stratification length (8) is computed via
7 N2
g =N 61)
N? N?

so that |H,| ~ 2% is O (1).
0
Furthermore, we find from (6) using (3), (7) and (55)—(57) the
dimensionless vertical buoyancy frequency

~ 1 2
N2 = (1 - 7> Ry (62)
) v/ H;

For y = 1.4 and at zy = Hy, we find ﬁz ~ (0.28. In calculations that
include vertical buoyancy, we use this value unless otherwise stated.
Furthermore, using again (3), (7) and (55)—(57) one finds

N ho [ H
i =" (—0) (63)
y—1\ 2

Thus, in smooth disc regions away from the disc mid-plane, one typ-
ically has |H,| < |H,| and |[N2| >> | N?|. However, near special loca-
tions such as pressure bumps, ice lines, or dead zone edges | N?| may
take larger values, whereas |H,| is expected to take smaller values.

Finally, we use the dimensionless cooling time S [equation
(13)] as a convenient parameter to explore different thermodynamic
responses of the gas. The isothermal limit corresponds to 8 — 0,
while the adiabatic limit corresponds to 8 — oco. However, in practice
values of B < 1072 are identical to the isothermal limit, whereas
values B > 10? reproduce adiabatic results.
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2.6.3 Dust size and abundance

The implementation of dust in our model introduces two additional
parameters compared to the pure gas model. These are the particle
Stokes number t [equation (15)] and the equilibrium dust-to-gas
ratio € [cf. equation (18)].

In this paper, we assume tightly coupled dust and gas with small
Stokes numbers T < 1072, although specific illustratory calculations
are performed with larger values. In a Minimum Mass Solar Nebula
disc, T ~ 1073-1072 corresponds to particle sizes from ~ 280 pum
at 10 au to ~ 9 um at 100 au for t = 1073, or between ~ 3 mm and
90 pum for T = 1072 (Chen & Lin 2020).

In the mid-plane of PPDs, dust is expected to settle to a relatively
dense layer with €y ~ 1 if the disc is laminar. However, this value
may be significantly smaller in the presence of external turbulence.
We therefore consider a range of values 1072 < €y < 1 in the disc
mid-plane in Section 4. On the other hand, for our calculations in
Section 5 away from the mid-plane at z = H, we assume, unless
otherwise stated, €y = 1073, as in Krapp et al. (2020).

2.6.4 Parameter inter-dependencies

While some of the above parameters can be adjusted independently
in our local model, they can be connected in the global disc. This
is for instance true for the vertical shear g, and the radial pressure
gradient, both of which depend on the radial temperature profile of
the global disc. Furthermore, in the presence of a finite gas cooling
time 8 > 0 and radial buoyancy N? # 0, one necessarily has 1 # 0.
That being said, it can still be useful to study the effect of a finite
N? while setting ) = 0, since the two parameters result in physically
different effects. The same applies to vertical shear g, and vertical
buoyancy NZZ. Of course, in the isothermal limit § — 0 the effect of
buoyancy vanishes, effectively setting N7 — 0 and N> — 0, while
n and ¢, can still be non-zero.

3 PRELIMINARIES ON THE STUDIED
INSTABILITIES

The set of linearized equations (39)—(46) encapsulates a number of
known gas and dust—gas instabilities, namely the COS, DSI, SI, and
VSI, in the appropriate limits. In this paper, we generalize these
instabilities within the aforementioned local model of dusty, non-
isothermal gas. We shall also find new instabilities unique to various
combinations of physical effects (vertical shear, dust settling or drift,
buoyancy, etc.). To guide our investigation in a more systematic
manner, we here provide a summary of the ‘base’ instabilities above.

The COS, DSI, SI, and VSI are all destabilized inertial waves
(IW), which are therefore central to our study. IWs are restored by
the Coriolis forces and thus only exist in rotating flows. They are
most easily extracted from the linearized equations by considering
an isothermal, pure gas disc without vertical shear (8 = €p = g, =
0). We then find 0 = iow, with

k.
NEENZ
in dimensionless units. IWs, therefore, require k, # 0, as do the base
instabilities. In the limit |k, /k,| < 1, IWs attain frequencies of £1,

corresponding to the local Keplerian frequency. In the discussion
below, for convenience, we define ., = k./k, where k = \/k2 + k2.

ow=+ (64)
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3.1 Pure gas instabilities

3.1.1 COS

As mentioned earlier, the COS requires the square of the radial
buoyancy frequency to be negative, N> < 0, and its growth rate is
maximal for gas cooling times 8 ~ 1. Under typical conditions
where 0P /0r < 0, the former criterion amounts to a negative
radial entropy gradient, 3S/0r < 0. The COS is an overstability
(oscillatory instability) of inertial waves which feeds off of the
disc’s unstable radial entropy gradient: Consider a gas parcel that
is displaced radially outward from its original reference radius. Due
to disc rotation it will undergo epicyclic oscillation. If 0S5/0r < 0,
during the first half of its epicycle the parcel will get in contact with
‘colder’ material such that it will deposit some of its excess entropy.
When it has returned to its original radius it is ‘colder’ (and hence
denser) than its surroundings and will therefore experience an inward
buoyancy force, which accelerates the inward motion. The reverse
process occurs during outward motion, which is hence amplified as
well, and the process runs away. For an illustrative explanation of
this mechanism, the reader is referred to Latter (2016).

The linear, gaseous COS was first studied by Klahr & Hubbard
(2014), Lyra (2014), and Latter (2016). Its potential role in plan-
etesimal formation has been demonstrated via the collection of dust
in vortices in local shearing box hydrodynamics simulations (Lyra
et al. 2018; Raettig et al. 2021). In Sections 4.2.1-4.3 we study in
some detail the effect of dust on the COS in the disc mid-plane. In
addition, in Section 5.4 we briefly consider the effect of dust settling
on the COS away from the mid-plane.

3.1.2 VSI

The local VSI studied here is a non-oscillatory instability of inertial
waves, tapping into the vertical gradient of the disc’s equilibrium
orbital velocity 0€2,/0z. This contrasts to the vertically global VSI
modes found in semi-global analyses (Barker & Latter 2015; Lin &
Youdin 2015) and numerical simulations (Nelson et al. 2013; Stoll &
Kley 2014), which are overstable. Nevertheless, a local approach is
much more analytically tractable, while still capturing the essence of
the instability.

In the local picture, we imagine an inertial wave with wave
vector k = k. €, + k. €, with k, > k_ in an incompressible gas, as
depicted in Fig. 1. On account of incompressibility, gas motions
occur on straight ‘lines’ inclined to the mid-plane. In the presence
of vertical shear g, > 0 [equation (4)], a gas parcel will possess
a larger specific angular momentum than its surroundings upon
downward motion (as indicated by the arrows). This will force it
to move radially outward, which amplifies the downward motion.
Similarly, upward motion is amplified as well, and instability ensues.
For this mechanism to work, the ratio k,/k, has to be sufficiently large
and positive. Otherwise, motions are stabilized by the disc’s radial
angular momentum gradient. This also implies that the instability is
non-oscillatory, as the restoring inertial forces are over-compensated
by the destabilizing vertical angular momentum gradient. In the case
g, < 0 the same argument applies to waves with k,/k, < —1.

The VSI has largely been studied in pure gas discs. In the limit of
perfectly coupled dust, the VSI can be dampened by dust-induced
buoyancy as it ‘weighs down’ the gas (Lin & Youdin 2017; Lin
2019). However, this only occurs in a stratified dust layer and is thus
absent in our vertically local models. Instead, in Section 5.1 we will
study the effect of partially coupled dust on local VSI modes, as well
as the interaction of the VSI and the DSI.
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Figure 1. Illustration of gas motions in an inertial wave with wavenumber
K = ky&, + k.8, with k; > k. > 0, which is ought to be subject to the VSI:
The destabilizing vertical gradient of angular velocity 0€2/0z dominates the
stabilizing radial gradient 0$2/0r, as explained in the text.

3.2 Drag instabilities

The SI and the DSI apply to dusty gas in which there exists
an equilibrium drift between dust and gas. For small dust-to-gas
ratios, these instabilities belong to a general class of ‘resonant drag
instabilities’ (RDI: Squire & Hopkins 2018). According to RDI
theory, a dusty fluid (here a mixture of gas and a single species
of dust) can be subject to a linear ‘drag instability’ if the equilibrium
drift velocity between dust and gas matches the phase velocity of
neutral waves that exist in the pure gas limit. This condition reads

k- AV = o (k) , (65)

where o is the (real-valued) oscillation frequency of an underlying
gas wave, and AV = V49 — Vo is the drift velocity at equilibrium.
Equation (65) relates the radial and vertical wavenumbers that yield
maximum growth (i.e. those which are resonant).

In the case of the standard SI and the DSI, instability results from
a resonance between IWs and the background drift. Then o; = ow,
while the radial component of the dust—gas drift, Aug, can be found
by subtracting equations (23) and (20) and the vertical component is
the dust settling velocity directly given by (25).

We note that the original RDI recipe was formulated for neutral,
purely oscillitory gas waves with o = io;. However, in our analyses
below, the gas is generally subject to buoyancy and cooling. This
implies (as shown in Section 4.1) that generally, 0 = o + io, with
or # 0, 1.e the corresponding gas waves are not neutral. Nevertheless,
when analysing the dusty gas problems below, we will apply the
RDI condition (65) to the imaginary part o; of the complex pure gas
frequency. Our results in Sections 4.4 and 5.2 will confirm that this
approach is appropriate.

3.2.1 SI

The classical SI (Youdin & Goodman 2005) was derived for an
incompressible, isothermal dusty gas (i.e. without buoyancy and
cooling/heating effects) in the disc mid-plane with wy = 0 and
no vertical shear ¢, = 0. Applying the RDI condition, equation (65),
to IWs and a background radial dust—gas drift, we find

kyAug = ., (66)
which gives the resonant vertical wavenumber as

kiAuo

/1 — Audk?

(67)

kz,res =
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Table 2. Overview of parameter values used in the various analyses presented in Section 4. The upper row indicates the instabilities and
the corresponding section in the paper. A value of H,;, = oo indicates that no entropy stratification exists in /z-direction.

COS
COS (gas) COS (gas) (gas + dust) DCOS + SI SI COS + SI
Section 4.1.1 Section 4.1.2 Section 4.2.1 Section 4.2.2 Section 4.4 Section 4.5
B >0 >0 >0 >1 >0 >0
N? <0 <0 <0 <0 >0 <0
H, <0 <0 <0 <0 >0 <0
N? 0 >0 0 0 0 0
H, oo <0 00 00 00 oo
q: 0 0 0 0 0 0
€0 0 0 >0 >0 >0 >0
T 0 0 >0 >0 >0 >0
n[x1073] 0 0 0 2.5 2.5 2.5

Although this equation might suggest that there are two different
curves k; rs(ky), in a linear analysis (as considered in this paper)
only one of the two solutions needs to be considered, since we only
consider equilibria with Auy < 0.

Previous theoretical studies of the SI have been restricted to the
isothermal limit. In this paper, we explore the possible influence of
buoyancy effects, the degree of which is controlled by the gas cooling
time, on the SI (Section 4.4). We will find that the SI can be modified
because cooling affects the underlying IWs or the RDI condition.

3.2.2 DSI

The DSI is an extension of the SI that emerges when vertical
dust—gas drift with the dust settling velocity w, occurs in addition
to radial drift Aug. The resonant criteria for the standard, isothermal
DSI is thus

kyAug + k,wgo = ;. (63)

Both components of the drift velocity drive the DSI, with the vertical
component being the dominant one if |wyo| = |Aug|. This typically
occurs at sufficiently large (dimensional) heights zg 2 hoH, from the
disc mid-plane. In contrast to the resonance condition (67) for the
SI, equation (68) for the DSI generally yields two distinct solutions,
which in the general case need to be computed numerically.

In this paper, we investigate the effects of buoyancy and also
vertical shear on the DSI (Section 5.2). An interesting result we
find is that, for non-isothermal gas, there is a third resonance with
‘cooling modes’, which have o; = 0. For such a mode, the resonance
condition reads

ko = = (69)
Wdo

Although the original RDI recipe applies to neutral gas waves, while

the cooling modes decay in the pure gas limit, we nevertheless

find them to resonate with dust—gas drift and cause instability (see

Section 5.2).

4 ANALYSIS: THE COS AND THE SI

In this section, we consider linear instabilities that do not involve
vertical shear or dust settling by setting g, = w49 = 0. This certainly
applies to the disc mid-plane (zo = 0), but our analysis below is not
limited to this location. For example, for a barotropic equilibrium,
vertical shear vanishes identically; and dust settling is irrelevant in
pure gas discs. We generally allow sz > 0 and finite H,, but it
should be kept in mind that these quantities formally vanish and
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diverge, respectively, if one applies our results to the disc mid-plane.
Note that the quantity HZN(._2 x 0,P — 0aszy— 0.

Neglecting vertical shear and dust settling simplifies the problem
by eliminating the VSI and DSI, respectively, allowing us to first
focus on the COS and SI. Compared to previous studies, we will
study here for the first time the linear COS in the presence of dust, as
well as the effect of buoyancy on the linear SI. Table 2 summarizes the
analyses considered in this section and lists the relevant parameters
involved in each analysis.

4.1 Pure gas, the COS

We begin by examining the COS in the pure gas limit. To this end,
we further set €) = §py; = 0 and discard the dust equations (43)-
(45). The setup here generalizes previous COS analyses (Klahr &
Hubbard 2014; Lyra 2014) by incorporating the effect of vertical
buoyancy sz # 0, which only exists off of the mid-plane. However,
as discussed above, the fact that we neglect vertical shear means that
we are implicitly considering a barotropic equilibrium or that we are
considering the disc mid-plane.
In this limit, we obtain the cubic dispersion relation

0= o’ +0° +EBo + ul, (70)
where
H, H
= (L4 N2) 4 1282 = (N2 HENE) D
¥4 r

and recall u, = k,/k and 0 = oy + io;. We now follow Lyra (2014)
and consider the real and imaginary parts of equation (70):

0= Bop + (0f — o} + 12) + B [ — 307] o (72)

0 = (B& — Boj + 3Bog + 20r) 0;. (73)

Assuming o # 0, first we solve (73) for o to obtain

/ 5, 2
O’1=:l: $+30R+EGR. (74)

Plugging this relation into (72) and assuming |og| < 1/8 (which
turns out to be fulfilled) we find
_ 2
oo Emm)B 5)
2 (1+ p%)

There is no simple instability criterion on the disc structure in the
general case, but instructive results may be obtained in the limiting
cases examined below. Furthermore, there is one subtlety involved
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Figure 2. Contours of linear growth rates of the COS in a pure gas with N; 2 = _0.01,H = —0.5 and B = 0.1, obtained from the numerical solution of (70) for

different radial and vertical wavenumbers k, and k_, respectively. Left: calculation in absence of vertical buoyancy (N 2 = 0 and 1/H, = 0, such that H, N 2 =0),
with & = /LZ (1 + N; ) The dashed curve represents the growth rate of modes with fixed k;Hp = 400 and varying k, (values indicated on the right ax1s) The
circles are the same growth rate computed using the analytical expression (76). Right: calculation including vertical buoyancy NZ2 = 0.28 with H, = —0.175
[cf. (62)]. The filled circles now correspond to (75) with & given by (71). The open circles represent the perturbation expression (80). Compared to the case with
N, } = 0 we find that the unstable region shrinks to smaller wavenumbers. Furthermore, COS modes now experience a cut-off at a radial wavenumber given by
(82). All of the displayed growth rate curves in each panel, respectively, are in excellent agreement.

in the analytical solutions (74) and (75), which for sufficiently small
W, describe inertial waves affected by buoyancy. These have been
derived under the assumption that o; # 0, since otherwise equation
(73) would be trivially fulfilled. For example, the full problem
includes the cooling mode, which possesses a purely real eigenvalue,
and which is discarded by this assumption. This is unimportant for
the discussion here as we focus on the COS.

However, in the case that sz # 0, the full numerical solution of
the cubic (70) turns out to be more complex than what is described
by (74) and (75). That is, the full numerical solution, which provides
three eigenvalues for all parameter values, reveals that the growth
rates of the inertial waves undergo a ‘bifurcation’ for a given k, =
ky, vif, the latter depending on the values of &, sz and B. At this
bifurcation the wave frequencies drop to zero. We explore this in
Appendix B.

Our analysis of the COS in this section is not affected by this
bifurcation. The reason is that in the presence of vertical buoyancy,
we find below that the COS modes rapidly damp for k,-values much
smaller than those for which the bifurcation occurs. For these values
ky < ky vir the analytical expressions (74) and (75) correctly apply.

4.1.1 No vertical buoyancy

We can recover the standard COS in an unstratified disc by neglecting
vertical buoyancy, N: 2 — 0, and setting H, — oo (such that H, N: 2
0). Then & — ,u,, (l + NZ) which gives
BuiN}

o = — S . 76

BT 21+ g2 [1+ N2)) 7o
Typically |N,2| < 1 in PPDs (cf. Section 2.6). Thus equation (76)
signifies instability when N < 0 (an unstable radial stratification).

By taking dog /08 = 0, we recover the maximum growth rate of

the COS over cooling times

1|k, N? a7
ORmax = — 5 | 7 | = F7——"
* 41k| T+ N2

which occurs for f = 1/(u;+/1 + N?) ~ 1/, such that the opti-
mum cooling time depends on the wavenumbers (Lyra 2014; Latter
2016). In the limit of long radial wavelengths k, — O this yields

1
OR. max ~ —*er (78)
' 4

for B ~ 1. Fig. 2 (left-hand panel) shows contours of linear growth
rates for 8 = 0.1 and N> = —0.01, obtained from the numerical solu-
tion of (70) in the unstratified limit (see above). The dashed curve rep-
resents the growth rate for k, Hy ~ 400 and is compared to the analyt-
ical expression (76) represented by asterisks, in excellent agreement.

4.1.2 Effect of vertical buoyancy

We now consider the effect of vertical buoyancy on the COS.
Fig. 2 (right-hand panel) shows numerically computed growth rates
from the full dispersion relation [equation (70)] including vertical
buoyancy N 2 = 0.28 and a comparison with the analytical expression
[equation (75)] for fixed k,Hy ~ 400. We see that the region
of instability (in blue) has shrunken towards larger wavenumbers
compared to the unstratified case (the left panel). Furthermore,
vertical buoyancy introduces a maximum k, beyond which growth
rates drop to zero; whereas in the unstratified case growth rates decay
smoothly as k- 2 [equation (76)].

To explain the above differences, we consider the cooling time §
as a small perturbation parameter? and adopt the perturbation series

o=op+of+mp+...

for the complex eigenvalue, where the o; are complex. Inserting this
in (70) and expanding the latter in orders of 8 prompts the equation

0=p2+o0f+0o (& +0f +201) B+ O (), (79)

with & given by equation (71). Solving (79) at each order of 8
separately yields 0‘02 = —u,g and o = (M? — & ) /2, which gives the

2The effect of vertical (and also radial) buoyancy is eventually controlled by
the value of the cooling time S.
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complete frequency as

. 1 1 1 H, H,
0 =ip; = SUINIB = SIGNZB + Sitci:p (H N7 + ﬁN,Z) . (80)

to first order in B. The second term agrees with equation (76) in the
limit 8 <« 1 and can result in the COS. The third term results in
a damping effect for sufficiently large k, due to vertical buoyancy
for N2 > 0. On the other hand, the last term can either be damping
or amplifying, depending on the values of the involved quantities.
It is noteworthy that this term can in principle be destabilizing for
specific combinations of radial and vertical wavenumbers above and
below the disc mid-plane, respectively, even if the disc is convectively
stable in both radial and vertical directions. Also, one sees that this
amplification is strongest if |k.| ~ |k;| (see Volponi 2016, for a
detailed analysis). For the fiducial parameter values adopted in this
paper (Section 2.6) this term is indeed slightly amplifying, but small
compared to the other terms, explaining the mild rise of the growth
rates with increasing k, before these eventually drop to negative
values (Fig. 2, the right-hand panel).

The cut-off radial wavenumber beyond which growth rates drop to
negative values, which is induced by vertical buoyancy, is found by
setting £ = u% [cf. equation (75)], or equivalently o = 0, yielding
the quadratic equation for k,

H.N?> H.N?
N2E — [ == 2 ) kok, 4+ Nk, = 0. 81
Using H, < 0, er < 0,H; <0and sz > 0, we find
H,
kx,cut-off = kzg' (82)

This yields k,Hy ~ 140 for the parameters used in Fig. 2, which
is consistent with the numerical results. We note that it can easily
be shown that (for the parameter regimes considered in this paper)
the values of ky cur.ofr are much smaller than those for which the
eigenvalues of inertial waves undergo a bifurcation, such that their
frequencies vanish (Appendix B). Therefore the linear COS modes
studied here are not affected by this bifurcation.

4.2 COS in the presence of dust

In this section, we consider the COS in the presence of dust, so that €
> 0and §p, # 0. First, we will ignore the effect of a radial background
pressure gradient in order to suppress the SI. This allows us to better
understand the effect of dust on linear COS modes (Section 4.2.1).
After this is settled, we will include a radial pressure gradient, which
leads to the co-existence of the COS and the SI, but also to a new
instability which turns out to be a dust-induced version of the COS
in the limit of long cooling times (Section 4.2.2). Throughout this
section, vertical buoyancy is neglected.

4.2.1 Excluding a background radial dust—gas drift: dusty damping
of the COS

We here consider the simplified case without a background radial
dust—gas drift, Vgo = V40 = 0. This corresponds to n = 0, but since
n o 9, P, this would actually imply N? = 0 and eliminate the COS.
Thus, our setup below with n = 0 but N2 # 0 is not fully self-
consistent, but is useful for understanding how dust—gas drag in the
perturbed state affects the COS without complications from the SI.
In the absence of a radial background dust-gas drift, we find
the effect of dust on linear COS modes to be always damping. This
damping can be described in terms of two distinct features. Compared
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Figure 3. Tllustration of the effect of dust loading on linear COS modes with
k.Hp = 400. The solid curves are linear growth rates of the COS in a dusty
gas obtained from numerical solution of (49) using 8 = 0.1, Nr2 = —0.01,
H, = —0.5, T = 1072 and various values of ¢ as indicated. Furthermore, as
explained in the text, we used 1 = 0. The solid curve with €g = 0 is the pure
gas growth rate for the same parameters obtained from numerical solution of
(70) with & = ,u% (1 + er) On the other hand, the dashed curves are also
pure gas growth rates of the COS, obtained from numerical solution of (70),
but with er replaced the effective buoyancy frequency (86). Note that the
blue dashed curve corresponding to €p = 0.03 almost indistinguishable from
the black solid curve corresponding to €g = 0.

to the dust-free limit, dust lowers the overall level of the growth rates,
depending on the dust-to-gas ratio €. In addition, the presence of
dust leads to a sharp cut-off at a critical radial wavenumber, such
that modes with larger wave numbers decay, similar to the effect of
vertical buoyancy [cf. Equation (82)]. This is illustrated in Fig. 3,
where the solid lines describe growth rates of COS modes with
k.Hy = 400, 8 = 0.1, T = 1072 and different values of €j. As
€ increases, growth rates decrease and the instability is limited to
longer radial scales. The dashed curves will be explained below.

Within our two-fluid model (Section 2), the damping effects
just described are necessarily related to the drag-force terms o
(8V¢ — 8V,4) in equations (40) and (41). This is demonstrated in
Fig. 4, where we plot the contours of growth rates obtained from
numerical solution of (49). The over-plotted curve represents the
growth rates for k,Hy ~ 400 which are compared to growth rates
resulting from the one-fluid model (Appendix A, see also Section
4.3), as well as an analytical expression obtained below. All of the
compared growth rates are practically identical in this case. The
lower panel shows the relevant energies involved in the excitation
and damping of COS modes (Section 2.5) for the same vertical
wavenumber. We find that it is essentially the radial and vertical drag
forces that damp the modes, whereas azimuthal drag forces appear
to be negligible.

Next, we wish to verify the above results by means of a simple
perturbation analysis. We start with the dispersion relation of the
system of equations (39)—(46). The full expression is lengthy and
will not be displayed here. Next we consider the Stokes number T <
1 as a perturbation parameter and adopt the perturbation series

U=O’0+O’1T+GQ‘L'2+...
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Figure 4. Upper panels: Contours of linear growth rates of the COS in a pure
gas (same as Fig. 2) and a dusty gas, the latter being obtained from numerical
solution of (49) with 8 =0.1, N> = —0.01, H, = —0.5, €9 = 0.3, 7 = 1072,
without the effect of a radial pressure gradient n = 0. The dashed curve
represents growth rates with fixed k;Hy = 400 (values are indicated by the
right hand axis). The red asterisks and magenta circles are the corresponding
growth rates obtained from the one-fluid equations (Appendix A) and the
perturbation expression (83), respectively, both in excellent agreement with
the numerical two-fluid result. Lower panel: Pseudo-energy decomposition
of the linear modes with k. Hy = 400 (Section 2.5), showing that these are
powered by radial buoyancy (as expected for the COS) and are damped mainly
by radial and vertical dust—gas drag.

for the eigenvalue. Inserting this in the full dispersion relation and
expanding the latter in orders of 7 yields

co(€o, ke, key B, N7, 07)
+ci(eo, ke key B, NE o)) T
+ca(€o, ke, koo BN} o)) T2+ O (77) =0, (83)
where i =1, 2, ... and where the coefficient terms ¢y — ¢, generally
contain a vast number of terms. We further assume that the cooling
time is small such that 8 < 1 and the gas is nearly (but not exactly)
isothermal. Solving (83) order by order in t gives
1 , BN? , €TN?

[ - r -
B M e MU rear

o (%), (84)

Ocool =
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. 1 BN? €T
e 2 oo ,2
ocos 13754 2“11—1—60 H'*Z(l—i—eo)
2
TN 20 (), (85)

T
48 (1 + €)?

representing the cooling mode and the two COS modes?, affected
by tightly coupled dust, respectively. Since we assume § < 1, we
expanded” all terms to the leading order in 8. The terms o T have in
addition been expanded to leading order in N? to simplify, but not
qualitatively affect the result. Since |N?| < 1 the first term in the
cooling mode (84) always dominates over the remaining terms such
that stability is assured. The frequency and the growth rate of the
COS modes (85) agree with (74) and (75), respectively, in the limit
of small 8 and €9 — 0.

In the above expressions, the radial buoyancy frequency appears
only in form of a product with 1/(1 4 €;), which is the equilibrium
mass fraction of gas [cf. (A7)]. This suggests the definition of an
effective radial buoyancy frequency

N?
1+€()

of the dusty gas. Thus, we find here that the COS in a dusty gas
is excited by a buoyancy frequency (86) that is effectively reduced
by dust loading, leading to an overall reduction of the growth rates.
Equation (86) implies that €y-values of order unity are required to
efficiently damp the COS on larger wavelengths.

Returning to Fig. 3, the dashed curves are growth rates of a pure gas
with accordingly varying effective buoyancy frequency, i.e. Equation
(77) where we replaced Nf — Nfeﬁ given by (86). For small k, the
growth rates agree very well with the dusty cases. In the one-fluid
model this effect of dust-loading is more clearly manifested (see
Section 4.3.1).

Furthermore, the real-valued term o 7 in (85) results in the growth
rates’ cut-off at larger k,. The cut-off wavelength can readily be
obtained by setting the real part of o cos equal to zero:

Ny = (86)

N2
kx,cut-off: _ﬁ . Z- (87)
€T

As expected, the value of the cut-off wavenumber decreases with
increasing €, (as also seen in Fig. 3) and (of course) only exists for
N2 <0.

Since the third term in (85), which leads to the cut-off, is indepen-
dent of N2, it represents a general effect of dust on inertial waves. In
Appendix C, we develop a reduced model to derive the same dusty
damping term of isothermal (i.e. not subject to buoyancy) inertial
waves. Furthermore, in Section 4.3.2 we provide an explanation for
this effect using the one-fluid formalism (Appendix A).

Alternatively, we can also assume that the inverse cooling time
E = B! « 1 is small, such that the gas is nearly adiabatic. By
performing again the series expansion in t as described above we
again find the cooling mode in addition to the pair of inertial waves:

l+e 1 €TN?
l+e+N2B  (1+€)

O (7). (88)

Ocool =

3The remaining modes, which are not presented, are generally decaying on
account of dust and are therefore not of interest here.

4We note that the cooling mode (84) is expressed here as truncated Laurent
series to the next leading order. Therefore also negative powers of 8 occur,
in contrast to a Taylor series, which is not applicable in this particular case.
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Here we expanded all terms to leading order in ,5 and in addition,
the terms o 7 to leading order in N2, prior to replacing E — 1/8.
We now find that if €y — 0, the real and imaginary parts of equation
(89) agree with (74) and (75) in the limit 8 > 1 and €y — 0, as
expected. For €y > 0, the leading growth rates again correspond to
an effectively reduced radial buoyancy frequency (86).

Although the focus of this section lies on the COS, we briefly
discuss the behaviour of the cooling mode (88). A finite coupling
time between dust and gas can in the limit of long cooling times (8
>> 1) result in a quasi-thermal instability by rendering the cooling
mode unstable. This instability feeds off the perturbed relative drift
velocity between dust and gas induced by radial buoyancy, the latter
acting only on the gas, similar to pressure. Now, if N2 < 0 and B is
sufficiently large, i.e. if

M. Lehmann and M.-K. Lin

(U +e)
€TN2 '’

B> (90)
then the second term in (88) dominates, effectively rendering the
system thermally unstable. The resulting growth rates are small
though, and are maximal for €y = 1, such that o ~ |N*|t ~ h3t.
On the other hand, if N> > 0 the system is thermally stable and
the cooling rate of the dusty gas is enhanced compared to that of a
pure gas. Similar to the effect of dust on buoyancy described above,
also the effect of dust on cooling is more clearly manifested in the
one-fluid model (see Section 4.3.3)

4.2.2 Including a background radial dust-gas drift: the DCOS

We now include the effect of a background radial pressure gradient
(n # 0), which is self-consistent with N2 # 0, as required for the
COS. However, as a background radial pressure gradient induces a
radial dust—gas drift, the system is also susceptible to the SI. The
co-existence of the two instabilities will be discussed in Section 4.5.

In this section we focus on long cooling times B >> 1 such that
the classical (pure gas) COS is negligible. Instead, we will show
here that in the presence of dust and a radial background pressure
gradient, the COS is modified such that in principle it can attain
considerable growth rates for arbitrarily large cooling times 8 > 1,
including the adiabatic limit, with maximum growth rates (across all
wavenumbers) actually increasing with increasing 8. We, therefore,
refer to the corresponding instability as the Dusty Convective Over-
Stability (DCOS), which is illustrated in Fig. 5 for 8 = 1000 (upper
panel), where the DCOS (the right ‘branch’) co-exists with the SI
(the left ‘branch’).

First of all, we note that a cooling time 8 = 1000 implies that
the classical COS is practically negligible. That is, from (76) we
find oz ~ 107> for the parameters used in Fig. 5. This estimate
does not include the damping effect of dust described by (89), such
that the actual growth rates are expected to be even smaller. On
the other hand, the DCOS requires N> < 0 and 1 # 0, as well as
dust. The first two criteria are prerequisites for the COS and the SI,
respectively. Similar to the COS, the radial buoyancy term in the
momentum equation (11) eventually drives the DCOS. As such, itis,
as its naming suggests, more closely related to the COS than to the
SI. Indeed, when gradually increasing the cooling time § we find that
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Figure 5. The upper panel shows contours of linear growth rates of a dusty
gas with T = 1072, ¢ = 0.03, n = 0.0025, N2 = —0.01, H, = —0.5and =
1000. In addition to the SI, the DCOS appears, which is powered by radial
buoyancy and the radial pressure gradient 7, as explained in the text. This is
confirmed by the pseudo-energy decomposition, displayed in the middle panel
for fixed k;Hy = 1000. We note that in principle there is a small amplifying
effect of radial buoyancy on the SI (cf. Section 4.4) as well. However, this
effect is much smaller than suggested by the plot since we display cube roots
of the pseudo energies to increase the visibility of small contributions. For
reference, the left dashed curve in the upper panel is the resonant wavenumber
(97), which is practically identical to (67) as explained in Section 4.4. The
right dashed curve will be explained in Section 4.3.4. The bottom panel shows
linear growth rates of a pure gas subject to the effective cooling time (95).
This plot confirms the principle amplification mechanism by dust on the COS
resulting in the DCOS, which is explained in detail in Appendix D.

one of the two COS modes is amplified within an increasingly narrow
wavenumber range for decreasing frequency |o;| < 1, whereas all
other wavenumbers (outside of this range), as well as the entire other
COS mode gradually damp, as expected anyways for increasing f.
For 8 = 1000 the band of unstable wavenumbers is rather narrow for
smaller wavenumbers, as seen in Fig. 5. The principle mechanism
driving the DCOS can be well explained using the one-fluid model
and will be discussed in Section 4.3.4.

Returning to Fig. 5, the middle panel displays the pseudo-energy
decomposition (Section 2.5), corresponding to modes with fixed k, Hy
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Figure 6. Contours of linear growth rates of a dusty gas subject to a radial
buoyancy frequency N? = —0.01, H, = —0.5, a cooling time 8 = 1000 and
a radial pressure gradient 7 = 0.05%. The prevalent instabilities for these
parameters are the SI and the DCOS (as explained in the text), as labelled
in the figure. Note that the classical COS is negligible with dimensionless
growth rates <1075, The growth rates of the DCOS and the SI are displayed
for varying €¢ (fixed T = 0.01) in the top panel and varying 7 (fixed € = 0.03)
in the bottom panel. The dashed curves are the resonant SI wave numbers
resulting from (65), and solved for the corresponding quantity on the vertical
axis in both panels.

~ 1000. This plot shows that radial buoyancy is the driving force of
the DCOS, which confirms our interpretation as it being a modified
(by dust) version of the COS. Since here €y < 1, the SI modes, repre-
sented by the left ‘branch’, are mainly powered by azimuthal drift’ (as
first noted by Lin & Hsu 2022). The bottom panel will be explained in
Section 4.3.4.

In addition, Fig. 6 shows growth rates of the DCOS and the SI
for varying €y (top panel) and 7 (bottom panel) at fixed k. Hy =
1000. We find that as long as €y < 1 the growth rates of the
DCOS exceed those of the SI. Furthermore, with increasing €g
the DCOS shifts toward the SI in wavenumber space, such that
the instabilities increasingly overlap. On the other hand, with
increasing Stokes number t both instabilities shift to smaller k-
values. While the SI growth rates increase with increasing t (at
least within the displayed range), those of the DCOS eventually
vanish due to increased damping by drag forces (cf. Appendix C).
This can be confirmed by considering the modes’ pseudo-energies
(not shown).

5Only for larger values €y > 1 the mode energies are dominated by radial
drift.
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4.3 One-fluid description of the COS in a dusty gas

Many of the results presented in Sections 4.2.1 and 4.2.2 can be
understood by adopting the one-fluid formalism of a dusty gas, as
outlined in Appendix A. Below we will provide explanations for
the damping of COS modes in absence of a radial pressure gradient
n = 0 (cf. Section 4.2.1) from the perspective of the single-fluid
approximation. Similarly, the effect of dust on the cooling mode
as well as the mechanism driving the DCOS will be discussed (cf.
Section 4.2.2).

4.3.1 Effective buoyancy of a dusty gas

By invoking the one-fluid momentum equation (A10), the overall
reduction of COS growth rates due to dust, as seen in Fig. 3, can be
readily understood as being the result of an effectively reduced radial
buoyancy frequency (86), the magnitude of which is the driving force
of the COS, as it couples to the epicyclic fluid motion in equation
(A10). This is because the radial buoyancy term in the single fluid
approximation (A10) reads

_HNzaﬁ
"p

Fy2

N? 3pg

r

"4 peo’

where p = pg(1 + €) is the total density and € = p4/pg4. This term
is identical to the buoyancy term in the pure gas momentum equation
(11) with N? replaced by N?/(1 + €) given by (86). Note that an
equivalent reduction of the vertical buoyancy frequency Nf occurs.
The reduced buoyancy frequency is a result of dust loading and is
not related to the (finite) coupling time t between dust and gas. In
fact, this reduction should be most severe for perfectly coupled dust
(t — 0).

oD

4.3.2 Effective compressibility of a dusty gas

On the other hand, the sharp cut-off at larger wavenumbers k, of
COS growth rates, which is also seen in Fig. 3 (and Fig. 4), is a
consequence of a finite coupling time between dust and gas. That
is, for t — 0, the cut-off vanishes (for both one-fluid and two-fluid
growth rates) and the growth rates asymptotically approach those of
the pure gas for large k,. Within the one-fluid model, we identify the
term in the linearized radial and vertical momentum equations (A25)
and (A27):

SF K V€0, kosu + kdw) = — %[ (% 5*)] 92)
v = L5 X z = V, -0V
b lkz €T ! " v 14+ ¢ b
with
1 (1+ &)’
—_—Ute)s 93
v = 2 o 93)

as the origin of the cut-off. This term stems from the second term
in equation (A22) when using it to eliminate §P in the momentum
equations. It is the only term that contains the Stokes number 7 in
the one-fluid momentum equations.

The second equality in equation (92) shows that SF v, can be
loosely interpreted as a ‘bulk viscous’ stress with ‘bulk viscosity’
vp. In standard fluid dynamics, bulk viscosity is associated with
energy losses due to finite compressibility. We, therefore, infer that
the compressibility of a dust—gas mixture gives rise to an effective
‘bulk viscosity’ of the single fluid, which damps the COS modes at
large k.. It should be noted that the above equations are not valid
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Figure 7. Illustration of the relevant terms in the one-fluid model (Ap-
pendix A) that lead to a cut-off of the growth rates of linear COS modes
at the critical radial wavenumber (87). The upper panel displays growth rates
for three different vertical wavenumbers k. as indicated, with t = 1072, €y =
0.03, B =1, and N,2 = —0.01 with H, = —0.5. The middle and bottom
panels describe, respectively, the corresponding divergence of the center of
mass velocity (A2) and the forcing term (92), representing the damping
due to an effective ‘bulk viscosity’ (93), resulting from the non-vanishing
compressibility of a dusty gas. In particular, while the effective bulk viscosity
(93) decreases with increasing radial wave number k,, the velocity divergence
V -V increases sufficiently fast to overcompensate the former decrease and
results in a damping effect.

in the limit of vanishing €,7, which would otherwise result in a
divergence of v, (see Appendix A).

For illustration, we plot in Fig. 7 COS growth rates, resulting
from numerical solution of the linearized one-fluid equations (A22),
(A24)-(A28), with T = 1072, €y = 0.03 and 8 = 1, for three different
values of k; as indicated. As already indicated in Fig. 4, the one-fluid
growth rates of the COS are practically identical to the corresponding
two-fluid growth rates for the parameter values considered here. The
remaining panels show the magnitudes of the velocity divergence
W -8v| and the ‘viscous’ term |¢Si7 w, |, respectively, for the same
wavenumbers. Thus, although v, decreases with increasing k,, the
increase in the magnitude of V.vis over-compensating such that the
resulting ‘viscous’ term increases with k.. For the parameters used
in this figure the radial cut-off wavenumber (87) yields ky cuoff ~
5.8k, in good agreement with the wavenumbers for which the drawn
growth rates drop to negative values.

4.3.3 Effective cooling time of a dusty gas

Complementary to our discussion at the end of Section 4.2.1, and
also in preparing our discussion of the DCOS in Section 4.3.4, we
briefly consider the dynamical effect of dust on gas cooling. When
considering the one-fluid model, the presence of partially coupled
dust (i.e. €9t > 0) gives rise to an effective cooling time (A29) of the
dusty gas. The full expression is fairly involved and depends on the
disc background structure through 7, N2, etc., and which enters the
entropy equation in the one-fluid model (A28).

Adopting the same approximations as in Section 4.2.1 (i.e. 8 > 1
and n =0, N2 =0, H7' =0, while N? # 0), the effective cooling
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time is given by

1 N2 1!
2_S0T%, } 94)

e = [B”Z(l ey
Notice that for k, — 0 and |N, ,2| <« 1, the cooling mode growth rate
in the two-fluid model, as given by equation (88), is 0 ¢oo1 =2 —1/Befts
i.e. the standard cooling rate of a gas with a cooling time Be. For
general wavenumbers, exact agreement is not to be expected since
equation (A28) describes the entropy evolution of the dusty fluid with
velocity V given by (A2), rather than only the gas with velocity V,.

4.3.4 The DCOS

The occurrence of the DCOS — a dust-induced version of the COS
discovered here and described in Section 4.2.2 as well as Appendix D
— can be explained within the one-fluid model as follows. We first
determine that within the one-fluid model, the terms in the entropy
equation (A 12) that are necessary for its onset are the second (o< 1/H,)
and fourth (o< n) terms on the right hand side. The former term
describes the advection of entropy resulting from the perturbation
velocities and is also necessary for the existence of the COS. The
latter term results from the equilibrium radial drift between dust and
gas.

By again considering the effective cooling time within the one-
fluid model (A29) we now have

1 L 2nTeoky } !
B (1+e€)?
which is complex. The background dust-induced gas drift transports
gas density or entropy perturbations, which contributes to an effective
cooling. Here we assume that &, >> 1 (as also seen in Fig. 5), so that
we can neglect the buoyant contribution to Bs [cf. Equation (94)].

In Appendix D, we provide a detailed explanation of the mecha-
nism underlying the DCOS. In short, the introduction of dust results
in a phase lag between the gas density perturbation and the gas
cooling term, induced by the imaginary part of (95), which requires
finite values of 7, 7, € and k,. This phase lag enhances the maximum
growth rates of the COS, and at the same time shrinks the unstable
region in wavenumber space, resulting in the DCOS. The phase lag
increases with increasing values of B, T and k,, and takes largest
values if €g = 1.

Returning to Fig. 5, the bottom panel shows the maximum growth
rates in a pure gas subject to the cooling time (95), which indeed
largely reproduces the DCOS as seen in the top panel of the same
figure. The dashed curve delineating the DCOS (top panel) can be
obtained as follows. As outlined in Appendix D, the optimal cooling
time of the COS (and the DCOS) is given by |Bes| o 1/0, where
o denotes the frequency of pure gas inertial waves. In the adiabatic
limit 8 — oo we have o; &~ u, (Section 4.1.1). Using (95) we then
find

Betr = [ 95)

k?
kpoos = — i (96)
(e _ 2
(2nreg)? x

Although the DCOS clearly does not fit into the concept of RDIs (cf.
Section 3.2), the close resemblance to the resonant SI wavenumber
(67), which is also evident from Fig. 5, is intriguing. This resem-
blance is a consequence of the similar criteria from which these
wavemumbers have been derived. That is, in both cases quantities
which are directly related to dust—gas drift are required to match the
frequency of inertial waves. Moreover, since T < 1 we have Suy ~
—2n7t/(1 + €y), such that for €y > 1 k; pcos becomes equal to (67).
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Figure 8. Illustration of the effect of radial buoyancy on the linear SI with €g = 0.1, T = 1072, n = 0.0025, er = 0.03, and H, = 0.16, such that the disc is
convectively stable. From left to right panels the cooling time g increases — as indicated — from the nearly isothermal limit 8 = 0.01 to the nearly adiabatic
limit B = 1000. The strongest effect of radial buoyancy occurs at intermediate cooling times 8 ~ 1, where the damping of the underlying (pure gas) inertial
waves is strongest, as described by (75). This is also clearly seen in the pseudo-energy decomposition, which is computed for the resonant wavenumbers (65)
and displayed as function of &, in the lower panels. On the other hand, SI growth rates in the adiabatic limit are nearly identical to those in the isothermal limit.

4.4 SIin the presence of a finite cooling time

In this section, we turn our attention to the SI and examine how
it is modified by gas buoyancy. Since the original SI of Youdin &
Goodman (2005) is incompressible in the gas (i.e. § o, = 0), one may
expect buoyancy to have a negligible effect. However, we shall find
that this need not be the case. We neglect vertical buoyancy NZ_2 =0
with H ' = 0. This is assumed to be the most relevant situation
because the SI is expected to operate in the disc mid-plane where the
dust settles, and where this condition applies. In general, however,
radial buoyancy may be present: N> # 0.

Since the SI is powered by the radial and azimuthal equilibrium
drift between gas and dust (cf. Fig. 5) one might expect the energy
equation to play little role on this instability. Indeed, in the limit of
small and large cooling times § <« 1 and 8 > 1, respectively, we
find no influence of radial buoyancy on linear SI modes. However,
not so at intermediate cooling times 8 ~ 1, where we find a damping
effect. Here we consider the case N2 > 0. If N? < O the SI and the
COS can co-exist, which will be discussed in the next section.

In Fig. 8 we compare SI growth rates in a disc with N> = 0.03 for
€0 =0.1and T = 1072 and for different values of 8. These parameter
values will be motivated later in Section 6.1. The plots show that the
SI can be stabilized (i.e. its growth rates are reduced to negligible
values) on an appreciable range of wavenumbers, depending on the
value of the cooling time B. For the parameters adopted here, the
fastest growing SI modes are significantly suppressed if 8 ~ 2.

The dashed curves represent the resonant wavenumber of the SI
given by (65) with o, given by (74), using the parameters specified
above. In the isothermal limit, 8 — 0, the resonant wavenumber is
given by (67). On the other hand, in the adiabatic limit 8 — oo we
have o; = £/, where in the current situation § = p? (1 + N?).In
this case we find

k)%AM()

A/ 1+ N2 — Audk?

which is only marginally different from the isothermal case (67)
on account of the dominance of disc rotation over radial buoyancy.

kz,res == (97)

For general B equation (65) needs to be solved numerically, but
the deviations from the isothermal case are small. Nevertheless,
numerical solutions are plotted as dashed curves in all panels of
Fig. 8. The plots in the lower panels describe the pseudo-energy
decomposition of the modes along the resonant curves as a function of
k. These curves confirm that buoyancy is the agent which suppresses
the resonant SI modes at intermediate cooling times.

As noted in Section 3.2 the original RDI theory considered neutral
gas waves. Cooling, however, not only affects the frequency of
inertial waves, but also their growth (damping) rate, in the case
of an unstable (stable) stratification, as given by equation (75). In the
present situation with N> > O and N 2 = 0, pure gas inertial waves are
damped. However, in order for the SI to occur the same waves are to
be destabilized by relative dust—gas drift. Therefore, one may expect
the SI to be ineffective, or even suppressed if the corresponding pure
gas inertial waves decay at a sufficiently large rate.

InFig. 9, we illustrate this for the case § = 2. Here the dashed black
curve is the numerically computed SI growth rate for 8 = 2 (same
as in Fig. 8) for the resonant wavenumbers (dashed curve in Fig. 8),
numerically computed from (65), and plotted against the resonant
wavenumber &, r.sHo. The solid red curve describes the decay rate
(negative growth rate) of an inertial wave ‘of" * computed using (75)
for B = 2. This decay rate is also evaluated for the same resonant
wavenumbers. The solid blue curve is the numerically computed
SI growth rate for B = 1073 (essentialy isothermal), adopting the
resonant wavenumbers (67). As explained above, the latter are
practically identical to the resonant wavenumbers for 8 = 2. We
expect the SI to be damped on wavenumbers for which the decay
rate of the corresponding inertial wave surpasses the isothermal SI
growth rate. Thus, for 8 = 2, we expect the SI to be damped roughly
for k,Hy 2 100, which is in good agreement with the actual SI growth
rate for B = 2 which indeed rapidly drops for k,H, 2 100.

Furthermore, Fig. 10 displays resonant SI growth rates for varying
N? (left panel with fixed €p = 0.01 and = = 0.01), varying = (middle
panel, with fixed N?> = 0.03 and €5 = 0.01) and varying € (right
panel, with fixed 7 = 0.01 and er = 0.03). The solid black curve
in all panels describes the same case with €y = 0.01, t = 0.01 and
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Figure 9. Illustration of the damping mechanism of linear SI modes by radial
buoyancy. Growth rates of resonant SI modes [i.e. those with wavenumbers
fulfilling (65)] of a non-isothermal dusty gas with 8 = 2 and N,2 = 0.03 are
displayed as dashed black curve (same as in Fig. 8). These are compared
to corresponding resonant isothermal SI growth rates, drawn as blue solid
curve. The difference between the two types of SI-modes is that in the non-
isothermal case the underlying (pure gas) inertial waves are subject to buoyant
damping (see the text and Section 4.1). The corresponding damping rate (for
B = 2) is drawn as red solid curve. Once this damping rate exceeds the
isothermal SI growth rates we expect the non-isothermal SI growth rate to
vanish, as explained in the text, in good agreement with the displayed curves.

N? = 0.03. The dashed curves in the second and third panels are the
corresponding growth rates for N> = 0. All curves assume 8 = 2.
These plots show that as long as €y < 1, radial buoyancy may in
principle have a significant impact on SI growth rates.

We note that we also performed calculations of the SI in the
presence of only vertical buoyancy. These reveal that a vertical
buoyancy sz ~ 0.1 is in principle able to stabilize SI modes on
sufficiently long length-scales, already at small cooling times 8 2
0.05. That is, even if the disc is only slightly non-isothermal. In our
numerical examples, only modes with k.H, > 10? survive against
vertical buoyancy. However, the SI is conventionally expected to
operate in the mid-plane dust layer, where the gas-related vertical
buoyancy is small (sz & 1). Instead, a dust-related vertical buoy-
ancy, stemming from a vertical dust density gradient (Lin & Youdin
2017), is expected to dominate the gaseous component close to the
mid-plane. However, as our model does not account for this dusty
component, the aforementioned results are unlikely of high relevance
and are therefore not presented here. Instead, in Section 5.2.1 we
present calculations of the effect of vertical buoyancy on the DSI,
which can operate at distances from the mid-plane where the gaseous
vertical buoyancy is expected to be significant.

4.5 COS versus SI

We briefly consider the co-existence of the linear COS and SI within
the disc mid-plane in the absence of vertical buoyancy. Fig. 11 (upper
panels) shows the contours of maximum growth rates of a dusty gas
subject to both the COS and the SI. The lower panels display the
corresponding contours in absence of radial dust—gas drift (n = 0)
and show the behaviour of COS modes as discussed in Section 4.2.1.
The first column compares different radial and vertical wavenumbers
with fixed 8 = 1, €y = 0.3, and 7 = 1072, The remaining panels
consider a fixed vertical wavenumber k,Hy ~ 1000. Generally, for k,
— 0 only the COS exists, while for radial wavenumbers approaching
the resonant wavenumber (65) the SI tends to dominate, depending
on the dust parameters. The dashed curve in each panel represents
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equation (67), in each case solved for the quantity that is varied
along the vertical axis. As outlined in Section 4.4, this is an excellent
approximation for the resonant wavenumber in the presence of only
radial buoyancy.

The second column compares different Stokes numbers T with
fixed B = 1 and € = 0.3. For large values t 2 0.5 such that dust and
gas are not tightly coupled the COS is largely suppressed in favour
of the SI. We also note that with increasing Stokes number the radial
cut-off wavenumber for COS modes is increasingly reduced by the
presence of the SI. This can be seen when comparing the upper and
lower panels.

In the third column we compare different values of the dust-to-gas
ratio € with fixed 8 = 1 and T = 1072. As explained in Section 4.2.1,
in the tight coupling limit of dust and gas (r < 1) order unity values
of €( are required to significantly damp the COS. For such values of
€ the largest SI growth rates exceed the COS growth rates by several
orders of magnitude. For the parameter values adopted here the SI
growth rates start to exceed the COS growth rates for €y ~ 0.5.

Finally, the fourth column compares different cooling times with
fixed €9 = 0.3 and t = 1072, The COS growth rates (represented
by the horizontal ‘branch’ extending to k, — 0) show the expected
‘symmetrical’ behaviour about the optimal cooling time § = 1, In
addition, the SI (represented by the vertical ‘branch’ at k,Hy ~ 1000)
experiences a slight ‘boost’, also in a symmetrical fashion about 8 =
1 The latter effect can be understood in the same way as the damping
effect on SI modes discussed in the previous section. In the case
N? < 0 pure gas inertial waves are subject to the COS and are thus
amplified. In the presence of dust, the same waves are resonantly
amplified through drag forces. Hence, the resulting growth rates are
larger than for a gas with N?> = 0, which are in turn larger than those
for a gas with Nf > 0 (cf. Fig. 9). The fact that the (resonant) SI
modes show almost no vertical dependence reflects the indepence
of the resonant wavenumber on g in this case. Moreover, the dust-
induced version of the COS (the DCOS: see Section 4.2.2) appears
for cooling times 8 2 10 around k,Hy ~ 2000, with growth rates
larger than those of the SI and the classical COS.

5 ANALYSIS: THE DSI AND THE VSI

Compared to our analysis in Section 4, we now include vertical
shear (g, # 0), dust settling (wq # 0), or both; which are generally
applicable to locations off the disc mid-plane. We can thus expect
the occurrence of the DSI and the VSI in addition to SI and the
COS discussed above. In the following, we will investigate the
conditions under which one or more of these instabilities are expected
to develop. In analogy to Section 4, our focus lies on the effect of
buoyancy on the DSI, and the effect of dust on the VSI. Furthermore,
we will consider the interaction of the VSI and the DSI. By the
latter, we mean the effect of vertical shear on the DSI, as well as the
effect of dust settling on the VSI. Table 3 summarizes the analyses
considered in this section and lists the relevant parameters involved
in each analysis.

Unless otherwise stated, we adopt the fiducial values €y = 1073
and 7 = 1072 for comparison with Krapp et al. (2020). Since dust
is expected to be concentrated near the mid-plane in a PPD, larger
heights should be more depleted of dust.

5.1 Pure gas, the VSI

Asin Section 4.1, we first restrict to a pure gas and consider equations
(39)-(48) with €y = §ps = 0 yielding the dispersion relation

Bo® +o? + pEo + 12 = 0, (98)
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Figure 10. Illustration of the effect of radial buoyancy on resonant linear SI growth rates [i.e. for those wavenumbers fulfilling (65)] for different values of the
dust prameters. Left panel: Different values of the radial buoyancy with fixed €p = 0.01 and v = 0.01. middle panel: Different values of the particle Stokes
number with fixed €g = 0.01 and er = 0.03. Right panel: Different values of the dust-to-gas ratio with fixed 7 = 0.01 and N,.2 = 0.03. The dashed curves in
the right panels are computed with N2 = 0. All plots assume 7 = 0.0025 and H, = 0.16.
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Figure 11. Illustration of the co-existence of the COS and the SI in a dusty gas subject to a radial buoyancy frequency N,2 = —0.01 (H, = —0.5) and a radial
pressure gradient n = 0.0025. Presented are contours of growth rates for varying radial wavenumber k. From left to right panels we consider varying vertical
wavenumbers k. (with €g = 0.3, 7 = 1072, 8 = 1), varying Stokes number t (with €y = 0.3, 8 = 1), varying dust-to-gas density ratio € (with T = 1072, 8 =
1), and varying cooling time 8 (with €9 = 0.3, T = 1072), respectively. In all panels apart from the first row we consider a fixed vertical wavenumber k,Ho =
1000. The bottom panels show the growth rates in absence of a radial pressure gradient = 0, such that the SI is suppressed and the COS behaves as described
in Section 4.2.1. The dashed curve in each panel describes the resonant SI wavenumbers given by (65), solved for the quantity varied on the vertical axis in each
panel, respectively. Note that in the upper right panel the DCOS appears for cooling times B 2 10, with growth rates exceeding those of the SI and the COS (see
Section 4.2.2 for details).

Table 3. Overview of parameter-values used in the various analyses presented in this work. The upper row indicates the instabilities and the corresponding
section in the paper. A value of H,;;, = oo indicates that no entropy stratification exists in r/z-direction.

VSI (gas) VSI (gas) DSI DSI VSI (gas + dust) DSSI COS + DSI

Section 5.1.2  Section 5.1.3  Section 5.2.1 Section 5.2.2 Section 5.3.1 Section 5.3.2 + Section 5.3.3 Section 5.4
B 0 >0 >0 >0 0 0 >0
N? 0 0 0 0 0 0 <0
H, o0 o) o) [ee) 00 o0 <0
N? 0 >0 >0 >0 0 0 >0
H, 00 <0 <0 <0 [e%9) 00 <0
>0 >0 0 >0 >0 >0 >0
€0 0 0 >0 >0 >0 >0 >0
T 0 0 >0 >0 >0 >0 >0
n[x1073] 0 0 1.0 1.0 1.0 0 1.0
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Figure 12. Illustration of the co-existence of the COS and the VSI, away
from the disc mid-plane at zg = ho. The parameters used in bioth panels are
H, = —-02, er = —0.01, and B = 1. The left and right panel considers a
vertical buoyancy frequency N‘,2 =0 with 1/H, = 0, and Nf = 0.28 with
H, = —0.11, respectively. The plot in the left panel is somewhat inconsistent
in that it assumes g, > 0 but Nf = 0. Nevertheless, it shows that the VSI is
more strongly affected by vertical buoyancy than the COS, which is expected
as the VSI possesses smaller vertical wavenumbers k, than the COS for the
same radial wavemumber k.

where

_ H, H
£ =p2 (N —24.) + uiNZ — juap: <§N3 + #Nf) . (99)

2= =2q.2, (100)

~ " 1

g =q.— — =, (101)
me 2

now including radial and vertical buoyancy, as well as vertical
shear, the latter parametrized through ¢,. Equation (98) general-
izes equation (70) with & — & — 2¢.k.k,/k?> = £ and p2— p?—
2q.kek./k* = ﬁ% Hence, the gas can be subject to both the COS and
the VSL.

5.1.1 Solberg-Hgiland criteria

Before we focus on the VSI, for completion we briefly derive the
conditions for stability in the adiabatic limit 8 — oo. In this limit
the dispersion relation (98) yields

ol +&=0, (102)

such that stability affords 2:-“ > 0. Using equation (99), this condition
can be written as the quadratic form

T
<“X) A (“‘) >0 (103)
Mz Mz

1 (H H.
N? —1 (N2 N2 g
1+ N?
(104)

Stability for all wavenumbers j., 1. is assured if the two eigenvalues
of A are real and positive. Using (5) and (6) and (8) and (9), these
two conditions result in the two criteria

1 oPO0S O0POS 0 (105)
- =—=—+—=—=—] >0,
ypg \ Or or 0z 0z
oP [0S oS
— (22 —0g, 22 1
oz (az q&ar>>0’ (106)
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i.e. the Solberg-Hgiland criteria (Tassoul 1978).

5.1.2 Isothermal VSI

In the isothermal limit 8 — 0, we directly find from (98):

OVSLiso = +u v 2%, (107)

which corresponds to® Equation (13) of Latter & Papaloizou (2018).
Thus, modes with g, > 0, or k, > k,/(2q.), are growing and, since the
stabilizing effect of rotation is eliminated by vertical shear, lacking
a restoring force and are hence non-oscillatory. Modes with smaller
k, are purely oscillatory since the stabilizing effect of rotation still
dominates for these modes (cf. Fig. B1, lower left panel). Since |q, |
« 1, growing modes have k, > k.

5.1.3 Effect of vertical buoyancy and cooling

We now consider buoyancy effects on the VSI. We find from the
numerical solution of (98) that radial buoyancy has negligible effects
on the VSI. This can be expected since in Section 4.1 we have
shown that radial buoyancy mainly affects modes with k, < k, and
since N7 >> |N?| off of the disc mid-plane. Furthermore, even if
N? < 0, the COS and the VSI would not overlap in wavenumber
space for typical disc parameters’ Hence, we will focus here on
the VSI including the effect of vertical buoyancy. For completeness,
Fig. 12 shows example growth rates of the COS and the VSI for gas
without (left panel) and with (right panel) vertical buoyancy.

In what follows, we set N> — 0 and H, — oo such that H, N> —
0. Then

£ — 2+ uiN..

The full effect of vertical buoyancy is realized in the adiabatic limit
B — oo, where we find

[
OvSLadiab = £z [2q; — ENZZ (108)

One can easily show that this expression remains imaginary if sz >
qzz, which is expected to be the case under normal conditions. Hence,
the VSl is fully stabilized by vertical buoyancy in the adiabatic limit.
This can be explained through the increased restoring force on verti-
cal gas motions induced by vertical buoyancy. This result holds also in
more realistic vertically stratified disc models (Lin & Youdin 2015).

If we now consider a small but finite cooling time 8 < 1, we can
assume a series solution

o=0p+cf+mp+....

Inserting the series into (98) and solving the latter equation order by
order in f yields

= 1
ovsi = £ \V2q; — EuiNf,B +0 (), (109)

i.e. the isothermal VSI modes with an additional damping term due
to vertical buoyancy, since sz > 0. Note that this damping term is
identical to the damping term by vertical buoyancy on COS modes
[equation (80)]

The symbol ¢ defined in Latter & Papaloizou (2018) is the negative of ¢,
defined here.

"By overlapping we mean that both instabilities exist with significant (and
comparable) growth rates
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Figure 13. VSI growth rates for different values of the cooling time 8 with
vertical buoyancy frequency sz = 0.28 with H, = —0.11 and fixed k,Hy =
100, numerically obtained from (98), drawn as solid curves. The open circles
represent the perturbation formula (109). For the curves with 8 > 1, the latter
incorrectly predicts a damping for all ;.

It is worth noticing that the onset condition for the VSI

g. >0 (110)

holds independently of the values of sz and B as long as B is finite.
Since the dispersion relation (98) is a cubic with real coefficients and
B > 0, there exists a real, positive solution for o if the constant term
is negative, i.e. ,ZZ? < 0, which translates to the above condition. This
differs from the semi-global analysis carried out by Lin & Youdin
(2015), where there exists a critical cooling time beyond which small-
k., VSI modes are formally stabilized. Nevertheless, the VSI growth
rates are strongly affected by the cooling rate 1/8, which is illustrated
in Fig. 13.

5.2 DSI in the presence of a finite cooling time and vertical
shear

We now include dust. In this case, the DSI is expected to become
important at heights 2> hoHy away from the disc mid-plane, where
dust settling becomes significant (Squire & Hopkins 2018; see
also Section 3.2.2). The isothermal DSI without vertical shear was
considered by Krapp et al. (2020). However, in a disc subject
to a finite cooling time, vertical buoyancy should be operating
off of the disc mid-plane. In addition, vertical shear is generally
present, depending on the radial temperature stratification in the
disc. Therefore we first investigate the effect of vertical buoyancy on
the DSI in Section 5.2.1. In Section 5.2.2 we consider the effect of
vertical shear.

5.2.1 Effect of vertical buoyancy

In this section, we consider the effect of vertical buoyancy on the DSI.
Here we omit radial buoyancy and vertical shear, i.e. H,' = N> =0
(such that H,N? = 0) and ¢, = 0.

Fig. 14 shows contours of DSI growth rates in the presence of
vertical buoyancy for increasing gas cooling time B from left to
right panels. The leftmost panel, corresponding to the isothermal
limit, agrees well with fig. 1 in Krapp et al. (2020). The value
Nf = 0.28 corresponds to (62) evaluated at zo = Hy. We find (as
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expected) that vertical buoyancy has a mitigating effect on the DSI,
as with increasing cooling time all modes are increasingly damped,
apart from some modes that closely fulfil the RDI condition for
inertial waves with positive frequency o; > 0, described by the upper
resonant ‘branch’ [i.e. the upper dashed curve: cf. Equation (68)].
On the other hand, modes along the lower dashed curve, fulfilling
the RDI condition for inertial waves with negative frequency o; < 0
are effectively damped by vertical buoyancy.

In addition, we also find instability associated with cooling modes,
which have o; = 0. The corresponding RDI condition yields &, o k,
for the most unstable modes [see equations (65) and (69), noting that
Aug < 0]. These are represented by the dashed straight line in all
panels, but this instability is most easily identified in the adiabatic
limit (8 = 10%) as the middle ‘branch’, albeit with substantially
smaller growth rates than the upper ‘branch’. In the absence of dust,
the cooling modes typically have a small decay rate oz ~ —1073 (cf.
Appendix B); but are now rendered weakly unstable via resonance
with the background dust—gas drift.

The lower panels in Fig. 14 show the pseudo-energy decomposi-
tion (Section 2.5) along the upper resonant curve. These plots confirm
that the DSI is (as its name suggests) primarily driven by vertical
dust settling (the red curve), and to a small amount by radial dust—
gas drift (the blue curve). The damping due to vertical buoyancy is
described by the magenta curve. Interestingly, and in stark contrast
to the SI (Fig. 8), the resonant DSI modes are not subject to any
notable damping due to dust-gas drag. However, for small radial
wavelengths k,Hy < 100 the modes become increasingly powered
by radial drift and decreasingly powered by dust settling. Also, the
unstable region increasingly shrinks around the resonant curve for
decreasing k.. Eventually, for k£, — 0 the contributions due to radial
drift and settling drop and the instability disappears.®

In the following, we derive a simplified model for the DSI which
allows us to present an analytical expression for its linear growth
rate and to better understand the effect of vertical buoyancy on this
instability in the limit of long cooling times 8 > 1.

We start with the complete set of linearized two-fluid equations
(39)—(46) as well as the pressure perturbation (48). Although the
DSI modes are powered by both radial and vertical drift (cf. Fig. 14),
the latter is dominant. To ease the analysis we, therefore, neglect
radial drift by setting the radial pressure gradient = 0. Using our
fiducial parameters we find by numerical experiment that the drag
force terms (radial, azimuthal, and vertical) from the dust onto the
gas do not alter the DSI growth rates and can hence be neglected
for this analysis. This neglect is most likely invalid for order unity
dust-to-gas ratios €,. However, we assume that €y < 1 in regions
where the settling velocity w,o of small dust grains is dynamically
relevant. Thus, we consider the following set of equations:

odug = 2M§5Ug + Mz (Hszz(Spg - Malod) , (111)
© T
1
odv, = —Eéug, (112)
1 ke 1
odpg = _Eapg - ;ﬁaug’ (113)
1
odug =28vy — — (Sug — Suy) — ik, waodug, (114)
T
1 1 .
o8y = =5 8us — — (8vy — 8vg) — ik, waodvy, (115)

8For practical reasons this is not shown here, since with decreasing k, the
required resolution increases substantially in order to properly resolve the
ever-shrinking region of unstable modes.
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Figure 14. Effect of vertical buoyancy sz = 0.28 with H; = —0.11 on the DSI (its linear growth rates o g) with increasing cooling time B from left to right
panels and with n = 1073, €9 = 1073, and 7 = 10~2. Apart from some modes that closely follow the upper and middle resonant ‘branches’ (i.e. the upper and
middle dashed curves, see Section 3.2), the instability is increasingly damped with increasing 8. The lower panels show the pseudo-energy decomposition along
the upper resonant branch. For display purpose (see the text) the energy decomposition is shown only for k,Hy > 10. The energy decomposition also confirms
that the DSI is mainly powered by vertical dust settling, and to a small extent by radial dust—gas drift.

1 ky

odwy = —— ((Swd + —8ug) — ik, waodwy, (116)
T k,

O’Spd = —iEO (kxéud + kzéwd) — ikzde(Spd. (117)

Notice that buoyancy only enters the problem via the product H.5p,
and N2.

In Appendix E we show that the linear growth rate of the DSI
resulting from above equations in the adiabatic limit 8 — oo and
assuming |ot| < 1 and |a, ;7| < 1, where

aq; = k;wqo, (118)

which describes vertical dust advection, reads

2
253 C
OR,DSI = X% 1 - K (119)
12 (L)?
2
with
x =A++/|B|, (120)
A =ay [2Teou} + 18 (u2 + uiN?) — 247 ], (121)
B = A%—4C? <0, (122)
C=3(ul+uiN)+ag.. (123)

It is also shown that if B > 0 then generally o g psi = 0.

Fig. 15 compares growth rates of the DSI in the adiabatic limit
resulting from numerical solution of the full eigenvalue problem
with n = 0 (upper panels) with those resulting from (119), drawn in
the lower panels. From left to right different values of the vertical
buoyancy frequency N, are compared, the smallest being vanishing
buoyancy, and the largest being the fiducial value. The agreement
is excellent, apart from some modes with subdominant growth

MNRAS 522, 5892-5930 (2023)

NE=0 'N2=0.014 [ N2=0.28

T s—

Log(ag)

—

| -4.0-3.0-20-1.0 0.0 |
'N2=0.014 (Red. model) | N5 =0.28 (Red. model)

NZ=0 (Red. model)

%\ e

10" 10° 10° 10* 10° 10' 10° 10° 10* 10° 10' 107 10° 10* 10°
ke Ho ky Ho ke Ho

Figure 15. The effect of vertical buoyancy on linear DSI growth rates in
the adiabatic limit § — oo, resulting from the analytical expression (119)
(lower panels) and the numerical solution of the full eigenvalue problem (49)
with n = O (upper panels). From left to right panels the vertical buoyancy
frequency sz is increased as indicated, with H; = —0.11 in all cases. The
dashed curves describe the resonant wavenumbers (126). As seen from the
plots, and as also derived in Appendix E, with increasing vertical buoyancy
the unstable region in wavenumber space shrinks and concentrates around the
resonant wavenumbers. Interestingly, the maximum growth rate of the modes
is independent of NZ_2 and is given by (129). The agreement between the
full numerical solution and our reduced model is excellent, apart from some
modes with negligible growth rates appearing in the full numerical solution.

rates which are present in the full solution, showing that the terms
neglected in (111)—(117) indeed have no significant effect on the DSI
growth rates. Similar as in Fig. 14 (where n > 0) with increasing
cooling time B, we find here that with increasing sz the unstable
region shrinks and becomes increasingly concentrated around the
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Figure 16. Same as Fig. 14, but now including vertical shear ¢; = 0.05. In contrast to Fig. 14, here we plot the pseudo-energies along the lower resonant
‘branch’ (i.e. the lower dashed curves in the upper panels), the latter experiencing amplification by vertical shear, whereas the upper ‘branch’ is slightly damped,
which can be seen by comparison with Fig. 14. The adiabatic limit with vertical shear clearly reveals the three distinct resonant branches of the DSI (cf. Section

3.2.2), as all non-resonant modes are effectively damped by vertical buoyancy.

resonant wavenumber, indicated by the dashed curve. Interestingly,
the growth rate of the resonant modes is not affected by buoyancy,
see below.

The drawn resonant wavenumber follows from (65) using

AD = 1706, (124)
o = /ur+ N2u?, (125)
and reads’

1 —kir’zg 1 2 2 2
ke res = \/ 2022 + 2072 \/(kﬁf%o — 1) + 412 N2K2.
(126)

As seen in Fig. 15, the resonant wavenumber settles on two distinct
values for k, < 1/(1z¢) and k, > 1/(tz¢), respectively, both of which
can be obtained from (126). The former limit reads

1

kz,res ~

. (127)
T20

On the other hand, for large radial wavenumbers k, > 1/(tzo) we
have
N,
kyres A ——. (128)
T20
Note that the resonant ‘branch’ in Fig. 15 corresponds to the
upper ‘branch’ in Fig. 14. The remaining branches do not appear
in Fig. 15, since there we consider the adiabatic limit, such that the
cooling mode is non-existent (eliminating the middle ‘branch’), and
neglect radial drift (which eliminates the lower ‘branch’). When
comparing the adiabatic case in Fig. 14 (right panel) with the
equivalent case of Fig. 15 (right panel), one may conclude that

9Since we only consider positive values of k, and k, we discard the negative
root.

radial drift (which is absent in the latter) has a major impact on
the unstable (resonant) wavenumbers, which substantially deviate
between the two figures for large k,. This appears to contradict the
dropping energy contribution related to radial drift, as seen in the
lower panel in Fig. 14. This can be explained as follows. The energy
decomposition as constructed in Section 2.5 corresponds to the real
part of the pseudo-energy. Therefore, it measures the energies that
determine the growth rates of the linear modes. When taking the
imaginary part instead, one retains the energies that determine the
oscillation frequencies of the modes. Indeed, when inspecting the
latter we find (not shown) that the contribution due to radial drift
becomes substantial for large k,, explaining its large impact on the
unstable wavenumbers in Fig. 14.

Furthermore, it is worth noting that in the limit of vanishing vertical
buoyancy sz — 0 we have ks — O for large k,. According to the
RDI theory, we expect the largest growth rates of the DSI to occur
at the resonant wavenumbers. However, the growth rate of the DSI
drops to zero in the limit k, — 0. This can be seen from (119) using
A = 0 and hence x = 4C® > 0, which readily yields opgi = 0.
Thus, for sz = 0, small vertical wavenumber modes are no longer
classified as RDIs.

In Appendix E, we show in the limit of large radial wavenumbers
ky > k, that with increasing NZ2 the region in k,-space within which
the DSI exists becomes increasingly small and indeed converges to
(128). The growth rate in this limit is found to be

€0 N.
OR.DSI = \/57 atk, = i
0

which is indeed independent of N, (and also 7) and yields o g psi =
0.022 for €y = 1073 in good agreement with the numerical result.

(129)

5.2.2 Effect of vertical shear

We find under general conditions the effect of vertical shear on
the DSI to be complex. This is not necessarily surprising, as the
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DSI and the VSI, both of which should be operating, overlap in
wavenumber space (cf. Figs 12 and 14). Fig. 16, which we discuss in
the following, is equivalent to Fig. 14, with the difference that in the
former we include vertical shear with g, = 0.05. While some modes
with smaller k, (including those on the upper resonant ‘branch’) are
now damped, modes along the lower resonant ‘branch’ appear to be
slightly amplified by vertical shear at larger cooling times 8 2 1.
This amplification is confirmed by the energy-decomposition, now
drawn along the lower resonant ‘branch’, as displayed in the lower
panels. Particularly, for the case with a small cooling time g = 0.001
the energy contribution by vertical shear even exceeds the one by
dust settling for radial wavenumbers k,Hy < 1000, suggesting that
the corresponding modes constitute a dusty VSI, rather than the DSI
modified by vertical shear. Indeed, in Section 5.3.2 we will show (in
absence of a radial pressure gradient n = 0) that dust settling and
vertical shear in combination result in an augmented version of the
VSL

We note that in the isothermal limit 8 < 1, pure gas inertial waves,
as considered in this section, are subject to the VSI, such that their
eigenvalues are given by (107) and become purely real-valued for
g: > 0. These non-oscillatory modes are either growing or decaying.
Therefore, the lower branch (which requires the existence of pure
gas waves with negative frequency) vanishes in this limit, and the
DSI formally (according to the RDI concept) cannot exist for radial
wavenumbers k, > min[ — (wgo/Aup)k,, k;/(2g;)], as given by (69)
and (110), respectively. For the parameter values used here, the latter
value is slightly smaller. Thus, we conclude that the modes with k,
> k,/(2q.) (including those on the dashed straight line) in the left
panel are not the DSI, but rather a modified (damped) VSI. However,
for larger cooling times 8 2 1 waves with positive and negative
frequencies exist also for k, > k,/(2q,), exceeding the VSI threshold
(see Appendix B for an explanation). This explains the occurrence
of the lower resonant branch for cooling times 8 2 1.

5.3 VSI in the presence of dust

In this section, we investigate the effect of dust on the VSI modes
described in Section 5.1. Here we will consider the isothermal limit,
such that the energy equation can be omitted. The effect of buoyancy
on VSI modes has been described in Section 5.1. It should be noted at
this point that vertical buoyancy resulting from a (vertically) stratified
dust layer near the disc mid-plane, which has a mitigating effect on
the VSI (Lin & Youdin 2017), is not accounted for in our local
model. This mitigation is most effective for perfectly coupled dust
(r — 0). Instead, here we study the effect of dust—gas drift on the
VSI, which requires T > 0. It turns out that while radial dust-gas
drift (stemming from a radial pressure gradient) has a damping effect,
vertical drift (due to dust settling) has an amplifying one. Drag forces
in the perturbed state are also accounted for, which are in fact critical
in the following analysis.

5.3.1 Effect of radial dust—gas drift close to the disc mid-plane:
dusty damping of the VSI

We consider a sheet of the disc close to the mid-plane such that g, >
0, but dust-settling w49 is negligible as compared to radial dust—gas
drift. That is,

|Awol| < [Auo] .

Using equations (20), (23), and (25) with 7 < 1 and n ~ A2, and
neglecting the small contribution from vertical shear g, we find the
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condition
2
20 S /’lo,

or zg S hoH)j in dimensional terms.

Based on numerical experimentation, we find that dust—gas drift
terms involving dust-density variations (which are responsible
for the SI) are negligible as long as €y < 1, and are discarded.
However, radial advection terms [the terms o uy in equations
(39)-(42) and o uyy in equations (43)—(46)], which also describe
radial dust—gas drift, are kept. This setup allows us to study the
damping effect of radial dust—gas drift, which mainly stems from
the radial pressure gradient n on the VSI. We, therefore, consider
the following reduced set of equations:

(0 + ikytgo) it = 20260, + %0 (1 — Sug) |

€0 2
—— (Wdua + pepidwa) (130)
. € ky 1
(0 +ikuug) Svg = — (Sva —8vg) + (q:— — = ) Sug, (131
T k, 2
1
(0 + ikyugo) Sug = 28vy — — (Suq — Suy) (132)
T
. 1 1
(o 4+ ikcugo)dvy = —ESW —q. 0wy — — ((Svd — SUg) s (133)
T

where we used (48) to replace the pressure perturbation in (130).

In Appendix F, we use the above equations and the approximation
€o < 1 to derive the approximate eigenvalue of the (growing) dusty
VSI mode:

€T atztx . €0 ag x

7 = e/ 2 - 1+, (1+a,0)

~ uN/2q; — €0t ay , —i€gag,y, (134)

where the last equality is a good approximation (with relative error
< 1072) for k. Hy < 10*, and where

aqx = kyutgo (135)

describes the radial advection of dust with the equilibrium velocity
Uq, [given by (23)] and therefore, as explained above (see also
Appendix F), radial dust—gas drift. Thus, compared to the pure gas
case, radial dust—gas drift results (via dust—gas drag) in a damping of
VSI modes. Furthermore, it induces a finite frequency of the modes
(also via drag).

Fig. 17 shows the damping of the VSI due to radial dust—gas drift
at zo ~ 0.03H,, by comparing linear VSI growth rates of a pure gas
(left panel) with those following from the numerical solution of the
full eigenvalue problem, where only dust-settling has been neglected
(middle panel) and the results using equation (134) in the right panel.
The plots correspond to 8 = 0.001 (quasi-isothermal), n = 0.001,
€9 = 0.01, T = 0.004 and g, = 0.0016. The latter value corresponds
to a height zo ~ hoH), (cf. Section 2.6). The dashed lines trace the
isothermal VSI criterion (110) in all panels. The second dashed curve
in the middle panel represents the resonant SI wavenumbers, given by

-k K2Au? (1 — k2Au?
kz,res — q:Kx 1+ \/1 + X 0( X 0) , (136)

1 — k}Aug q?

which follows from (65) using (107) with g, < 0 In the limit g, —
0, equation (136) is identical to (67). For the value of g, = 0.0016
the difference to the latter is negligible. The energy decomposition
(bottom panel), which is drawn for fixed k,Hy = 10 (indicated by the
dashed horizontal line) confirms that for a small value €y = 0.03 the
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Figure 17. Illustration of the damping of linear VSI modes due to radial dust—gas drift, stemming effectively from the equilibrium advection of dust with radial
velocity ugq in equations (132) and (133). Compared are VSI growth rates of a pure gas (left panel) with those resulting from numerical solution of (49), where
dust settling has been neglected (middle panel) and the analytical expression (134), resulting from the reduced model derived in Appendix F. The parameters
used for these plots are n = 0.001, €9 = 0.01, T = 0.004 and g, = 0.0016. The latter value corresponds to the vertical shear at a height zo = ~hoHy (cf. Section
2.6). The dashed curves in all panels trace the VSI threshold (110). The additional dashed curve in the middle panel represents the resonant SI wavenumbers
(136). The lower panel displays the pseudo-energy decomposition (Section 2.5) for fixed k,Hy = 20 (indicated by the dashed horizontal line), showing that

damping of the VSI is dominated by drag forces, as explained in the text.
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Figure 18. Growth rates of the VSI, similar to those described in Fig. 17,
but now for varying Stokes number 7 with fixed €p = 0.01 (upper panels)
and varying dust-to-gas ratio €( and fixed r = 0.004 (lower panels). All plots
consider a fixed k;Hy = 10 and adopt n = 0.001 and g, = 0.0016. The latter
value corresponds to the vertical shear at a height zo ~ hoHj (cf. Section 2.6).
The left and right panels describe numerically obtained growth rates and those
resulting from (134), respectively. The reduced model (Appendix F) turns out
to be valid for € < 1. For larger values, the neglected terms in reduced model
equations involving dust density perturbations become significant and the SI
starts to repress the VSI. The dashed curves in the left panels are the resonant
SI wavenumbers, resulting from (136).

dust—gas drift contribution that is related to dust density perturbations
is sub-dominant, justifying its neglect in the reduced model.

Instead, most of the damping occurs through the drag-force terms
o (8V4 — 8V,) (Section 2.5). Note that the difference in the dust and
gas advection velocities (here  ay, ,, since the gas drifta, . o< €p aq «
is neglected because €y < 1), which also describes radial dust—gas
drift as explained above, eventually contributes via the drag terms. In-
deed, by switching off the radial advection terms in the full numerical
solution one essentially recovers the pure gas VSI, with a negligible
amount of drag-related damping. If €y = 1 dust density perturbations
are no longer negligible, and the approximation breaks down.

This is further illustrated in Fig. 18, where we show numerically
obtained growth rates of the dusty VSI for varying t (top panel) and
€o (bottom panel) and fixed k,Hy = 100. These are again compared
to those resulting from (134). Interestingly, the damping of the VSI
appears to be nearly independent of €, for €y < 1. On the other hand,
foreg 2 1 the VSIis overwhelmed by the SI, which the reduced model
fails to describe. The dependence on 7 in the upper panel shows a
clear decrease of the unstable region in k,-space. This decrease is
accurately captured by the reduced model equation (134).

5.3.2 Effect of vertical dust settling away from the disc mid-plane:
the DSSI

We now consider typical heights zo ~ Hp away from the disc mid-
plane such that the settling of dust becomes dominant over radial
dust—gas drift. At the same time, for simplicity, we omit radial and
azimuthal dust—gas drift (n = 0). The radial and azimuthal drift
induced by dust settling in combination with vertical shear [cf.
equations (23) and (22)] is very small and can be neglected for
our purposes. Furthermore, since the problem considered here is
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Figure 19. Illustration of the DSSI, a combination of the VSI and the DSI. The left panel shows the isothermal pure gas VSI growth rates, obtained from
numerical solution of (70) with ¢, = 0.05 and g = 1073 (quasi-isothermal) and at (scaled) distance zo = ho away from the disc mid-plane. The second panel
shows growth rates of a dusty gas resulting from numerical solution of (49) with aforementioned parameter values, T = 1072, g = 103 and n = 0 (no radial
pressure gradient). The third panel describes growth rates resulting from the analytical expression (G7), in very good agreement with the numerically obtained
values. The plots clearly show how dust settling amplifies the pure gas VSI growth rates. This is confirmed by the pseudo-energy decomposition of the modes,
shown in the bottom panel for fixed k, Hy = 100. The DSSI modes here are subject to very little damping by dust. This is in contrast to the situation with  # 0,

where the DSSI is substantially suppressed (see Fig. 16).

very similar to the one of the DSI in Section 5.2.1, we again neglect
radial and azimuthal drag force terms from the dust onto the gas. The
difference to the problem in Section 5.2.1 is that here we consider
the isothermal limit instead of the adiabatic limit and include vertical
shear rather than vertical buoyancy.

Thus, we have

08Uy = 2280, — ptte 2 3pa. (137)
T
€0 ~
odv, = - (8vy — 8vg) + G-Sug, (138)
1
(G’ + ikzwdo)Sud = Z(SUd - — (514,1 — Bug) ) (139)
T
. 1 1
(o + ik, wyo) vy = —Eﬁud — g 0wy — — (8vd — 6vg) , (140)
T
(U + ikzwdo) S,Od = —iéo (kXSMd + kZ(Swd). (141)

In Appendix G we derive (by assuming |o7| < 1 and |a, 7| K
1) the approximate cubic dispersion relation

o’ + ikzwd0<72 - Zﬂgﬁza —2i (EOMJZ( + ,u,z) k.waog; = 0, (142)

as well as an analytic expression for the growth rate of the VSI mode
resulting from (142), which is given by equation (G7).

Fig. 19 compares contours of the analytic growth rate (G7) (right
panel) with those obtained using the full eigenvalue problem with
n=0and B = 1073 (essentially isothermal, middle panel) and those
of a pure gas (left panel). Small deviations occur between the growth
rates in the middle and right panel for large k, > 10* since we
assumed |a,, ;7| < 1 in our derivation. The energy decomposition
(lower panel) for k, Hy = 100 (indicated by the dashed horizontal line)
reveals that the growing modes are powered by vertical shear as well
as dust settling, in contrast to the pure gas case. We thus refer to this
instability as the Dust Settling Shearing Instability (DSSI). Indeed,
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Figure 20. Linear growth rates of the DSSI in the limit K, — 0, obtained
from numerical solution of (49) with ¢, = 0.05, n = 0 and g = 1073
(quasi-isothermal) are displayed as solid curves for different values of
and €p. The circles describe corresponding growth rates resulting from
the analytical expression (143), which is derived from a reduced model in
Appendix G2. The agreement is generally excellent for Stokes numbers 7 <
10! and k.Hy S 1000.

the resulting growth rates of the DSSI are substantially larger than
those of the pure gas VSI. The VSI threshold g, = 0 is delineated by
a dashed line in all panels.

Note that the DSSI is not an RDI. Since here n = 0 we have Auy =~
273¢,7¢ > 0, following from equations (20) and (23). Thus, the RDI
condition, which in the present case reads k, Auy + k,wqo = O (since
the pure gas frequency following from (107) vanishes for g, > 0),
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Figure 21. Illustration of the damping of the COS by dust away from the disc mid-plane. The left panel shows numerically obtained maximum growth rates of

a pure gas with N> = —0.01, H, = —0.2, ¢, =0.05, 8 = 1, N? = 0.28 and H,

—0.11, at distance zo = ho away from the disc mid-plane, i.e. the COS subject

to vertical buoyancy (cf. Fig. 2) and vertical shear (which has a negligible effect). The middle panel shows corresponding maximum growth rates of a dusty gas
with €9 = 1073 and 7 = 1072, Here the COS experiences, compared to the situation within the disc mid-plane (Fig. 4), an additional cut-off for a given vertical
wavenumber, indicated by the dashed horizontal line, which is given by (146). Moreover, in this case the DSI appears (Section 5.2). The third panel shows the
growth rates of the COS resulting from equation (145), in good agreement with those in the second panel. Finally, the fourth panel shows the pseudo-energy
decomposition of the modes traced by the dashed vertical line in the second panel. These (COS) modes are powered by radial buoyancy and are mainly damped

by dust—gas drag, as explained in the text.

cannot be satisfied for positive values of k, ., and wy as considered
here. Nevertheless, a very similar energy composition to that of the
DSSI presented here is also found for near-resonant DSI modes in
the presence of vertical shear with n # 0 (see Fig. 16, the left panel).
In Section 5.2.2 we argued that the latter modes are actually not the
DSI. Instead, these can be considered as DSSI modes in the presence
of a radial pressure gradient n # 0. Fig. 16 suggests that a radial
dust—gas drift (induced by 1 # 0) has a mitigating effect on DSSI
modes with k, = k./(2g,). In the following section, we will confirm

~

in a different way that the DSSI is indeed a unique instability.

5.3.3 Limit of small vertical wavenumbers

Rather than exploiting the exact solution of the cubic dispersion re-
lation (142) we here derive analytical expressions for the growth rate
and frequency of the DSSI in the limit of small vertical wavenumbers
k. In order to better understand this instability, we formally set k, =
0. This consideration eliminates the pure gas VSI as well as the DSI,
since both instabilities vanish as k, — 0 (cf. Section 3.2).

In Appendix G2 we use the full set of linearized equations in the
isothermal limit to derive growth rate and frequency for the DSSI in
the limit k, — 0:

1

1 €p 3

=3 -k, e 143
OR [(4 szd01+60) (143)
and

K !
€0 xq:Wdo €0

= =2k, — . 144

or Qde01+€0 ( 1 1+60> (144)

These results show that the here-discussed instability is indeed novel.
It independently vanishes with vanishing dust settling (described via
the factor tzp) and vertical shear g, distinguishing it from both the
VSI and the DSI.

We verified that (143) agrees accurately with the full numerical
solution for values of 1073 <€, < 1and 7 < 107, for a large range of
wavenumbers, which is illustrated in Fig. 20. However, large values
of €y ~ 1 are not typically expected away from the disc mid-plane

anyway. The reason for the good agreement exhibited in Fig. 20 is
that (143) [and also (144)] is derived from the exact solution of the
cubic dispersion relation. In the derivation, we only assumed |o 7| <
1 and neglected the contribution due to azimuthal drift, which is sub-
dominant (see Appendix G2 for details). Note that for eyt — 0, also
the frequency (144) vanishes, in agreement with the pure gas VSI.

5.4 Dusty damping of the COS away from the disc mid-plane,
generalized growth rate

We do not find any notable effect of radial buoyancy on the DSI or
the VSI. This is not surprising since radial buoyancy mainly affects
modes with k, < k, [cf. equation (76)], while the aforementioned
instabilities typically exist for k, > k.. In principle, however, the COS
can co-exist with the DSI, the VSI (cf. Fig. 12), or their combination
(the DSSI). Here, we briefly explore the COS with vertical shear and
dust settling.

Fig. 21 (first and second panel) shows the co-existence of the
COS with aforementioned instabilities at a distance zo = Ay from the
mid-plane (recall that z is scaled with (). We use N,2 = —0.01 to
enable the COS and include vertical buoyancy, dust settling, vertical
shear, and a radial pressure gradient, the latter of which enables a
background dust—gas drift. Compared to the situation within the disc
mid-plane (Fig. 3), the presence of dust now also results in a vertical
wavenumber cut-off for the COS growth rates (seen in the second
panel). In Appendix C we derive an expression for this dust-induced
damping effect, which is related to the vertical advection of dust
with the equilibrium velocity wg. The remaining panels will be
discussed below.

Combined with our description of the COS within the disc mid-
plane in Section 4.2.1 we can now formulate an analytical expression
for the growth rate of the COS, which includes the effects of dust
and (vertical) buoyancy for a general distance zy < hy away from the
disc mid-plane. This generalized growth rate reads

(-1 enlt ekl
2(1+e) (1+%) 2(0+e) (1+¢)

OR,COS = — (145)
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where & is given by (71) and where the factor 1/(1 + €j) in the first
term has been added as compared with (76) to account for the effect
of dust loading, as described in Section 4.2.1. The above expression
for the growth rate does not include the effect of vertical shear.
However, based on numerical solutions we find its effect on the COS
to be negligible. In the limit zy — 0, €9 — O, N2 — 0 (mid-plane,
no dust, no vertical buoyancy), we recover the growth rate (76),
originally derived by Lyra (2014) and Latter (2016).

The expression (145) is constructed by hand and is not derived
from the underlying equations in a rigorous manner. Nevertheless,
the first term o B with €9 — 0, which corresponds to the dust-free
limit, is exact (at least in practical terms, see Fig. 2). Furthermore,
in Section 4.2.1 we have shown that the second term, which
is independent of buoyancy, accurately describes the sharp dust-
induced drop of the growth rates beyond some k,. Moreover, as
shown in Fig. 3, the inclusion of the factor 1/(1 + €y) in the first term
accurately describes the dust-induced reduction of the growth rates
for small k, for 0 < €y < 1.

Fig. 21 (the third panel) shows growth rates of the COS resulting
from (145), in good agreement with the full numerical solution. The
DSI does not appear in the reduced model, as the latter ignores
the vertical dust-gas drift term in the vertical gas momentum
equation, which triggers the DSI. The energy decomposition (for
fixed k,Hy = 1) shows that drag forces lead to the cut-oft. As outlined
in Appendix C, itis the vertical advection of dust with the equilibrium
velocity w0, which is the origin of the vertical cut-off wavenumber
k;. cur-oft- In order to obtain an estimate for k; cu.or We solve (145) for
vanishing growth rate in the limit k, — 0. This results in a quadratic
equation for k,, readily yielding (the positive root)

. - —BN? (1 +€)*
seutoff =4[5 [1+ 82 (14 N2)] erw]y

where the first factor in the square root equals the growth rate (76)
evaluated at k, = 0, and which only exists for N> < 0. This vertical
cut-off wavenumber is indicated by the dashed horizontal line in
Fig. 21 (middle and right panels). Since (as outlined in Appendix C)
we find that the dust—gas drift terms involving dust density perturba-
tions are negligible for this damping effect, the only remaining energy
contribution describing a coupling between dust and gas is that due to
drag force terms. Indeed, the vertical drift of dust relative to the gas,
expressed by the dust’s vertical advection terms [the terms o< w4 in
equations (43)—(46)], acts onto the gas via drag forces.

It should be noted that the applicability of (145) has some
limitations within our model. First of all, in its construction, we
neglected the radial gas pressure gradient. However, this neglect
only affects those modes in a notable manner which become
susceptible to the SI for larger values of €y. Moreover, the derivation
of the damping terms away from the disc’s mid-plane assumes
small values of €, such that €y < 0.01 is required to keep relative
deviations from the exact solution within a few percent. As
stated earlier, this assumption is reasonable away from the disc’s
mid-plane.

(146)

6 DISCUSSION

6.1 SI in non-isothermal discs

Our analysis of the SI in the disc mid-plane in Section 4.4 revealed
that the instability behaves very similar in the adiabatic and the
standard, isothermal limits. This can be understood within the RDI
framework by noting that the corresponding inertial waves, which
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are fundamental for the SI, have similar frequencies and are neutrally
stable in these limits. This suggests that properties of SI-driven
turbulence and dust clumping should be similar in the inner, optically
thick regions of PPDs as it would in the outer parts (Lin & Youdin
2015; Barranco et al. 2018; Pfeil & Klahr 2019; Fukuhara et al. 2021).

However, at intermediate disc radii, the gas may cool on a dynam-
ical time-scale (8 ~ 1). If the radial stratification is stable (er > 0),
then radial buoyancy can effectively stabilize the SI on small scales
(k.. .Hy = 107 in our numerical examples). This is because the
corresponding pure gas inertial waves decay sufficiently rapid. The
stabilized SI modes include the fastest growing ones that would occur
in an isothermal or adiabatic gas. Thus, overall the SI is weakened
and restricted to larger scales than in aforementioned limits.

What could be the potential impact of radial buoyancy on plan-
etesimal formation in PPDs? In order to address this question within
the limitations of our local, unstratified model, in the following we
consider a range of possible gas density slopes —2 < p < —0.5 and
gas temperature slopes —1.5 < g < —0.1 of the underlying global
model for a PPD, as these determine the value of er (see Section 2.6).
We note that observations suggest that in smooth disc regions typical
values of the temperature slope are —0.75 < g < —0.5 (Andrews
et al. 2009). The gas density profile, on the other hand, is generally
hard to constrain from observations. For the above values of p and ¢
and using hy = 0.05 we find values for the radial buoyancy frequency
—0.006 < N? < 0.003 in the disc mid-plane zo = 0 at r = ry. As
for the dust parameters 7 and e, it is useful to distinguish between
such parameters that have been found to cause strong dust clumping
due to SI in nonlinear simulations, and those which lead to only
weak clumping, and which are thus expected to be less relevant for
planetesimal formation in smooth disc regions. For instance, for 7 =
107! it has been found that values €, > 1 are required to cause a
strong clumping in nonlinear (isothermal) unstratified shearing box
simulations (Johansen & Youdin 2007). That being said, for such
parameter values we do not find any influence of radial buoyancy on
the linear SI growth rates for the (positive) values of N2 given above.
It should be noted at this point that recent vertically stratified shearing
box simulations of the SI (Li & Youdin 2021) revealed that strong
clumping due to the SI can already occur for substantially smaller
values of €(. Nevertheless, we conclude that if radial buoyancy has
any significant effect on dust concentration in PPDs, it must be
at special disc locations, such as edges of deadzones, snowlines,
pressure bumps, etc.. But considering that such special locations are
also preferable sites for dust to concentrate, it may thus be worthwile
to provide estimates for N2 at such locations.

Indeed, one scenario that has been found to bear direct relevance
for planetesimal formation via the SI is the concentration of dust
at a pressure bump. Specifically, using isothermal shearing box
simulations Carrera et al. (2021a, b); Carrera & Simon (2022) studied
the process of planetesimal formation of grains with 1072 <
< 107! at initially solar abundance. As such, they found that for
grains with 7 ~ 10~! planetesimal formation is a robust process
at a Gaussian pressure bump with dimensionless amplitude = 0.2,
whereas Carrera & Simon (2022) found that this is not the case for
grains with T S 1072, Nevertheless, the presence of a pressure bump
can affect the slopes p and ¢ in such a way that buoyancy effects may
be important, not captured in an isothermal model.

Fig. 22 shows the maximum value of N? in the vicinity of a
Gaussian pressure bump with dimensionless amplitude'® 0.4 and

10For a disc with iy = 0.05 Lehmann & Lin (2022) found such a bump to be
stable with respect to the Rossby wave instability.
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Figure22. Maximal values of the radial buoyancy frequency in the vicinity of
a Gaussian pressure bump with dimensionless amplitude A = 0.4, embedded
at r = rp in the global disc (Section 2) with hg = 0.05, radial temperature
profile (56) and density profile (57), for varying power law parameters p and
q (see Fig. 23 for an example).
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Figure 23. Illustration of the effect of a pressure bump on the radial buoyancy
frequency embedded in a PPD. The top panel shows the radial profiles of the
gas density (57) with a Gaussian pressure bump with dimensionless amplitude
0.4 superposed at r = ry. The middle and lower panels display the resulting
radial buoyancy frequency (59) with p replaced by pegr, which takes into
account the pressure bump, and which is displayed in the bottom panel.

radial width H, [see for instance equation (5) in Carrera et al.
(2021a)]. Thus, larger values of the density slope p generally lead
to a larger maximum value of N?2. Specifically, we find a maximum
value N2 & 0.03 for p = —2 and g = —1.35, but significant values of
N? > 0.01 are found within the entire range of p and g values. The
case with N? = 0.03 is illustrated in Fig. 23, showing the mid-plane
radial profiles of the gas density p,, radial buoyancy frequency N>
(with maximum value 0.03), and the effective density slope

0lnp,
Olnr’

Deft = (147)
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which has been used in (59) instead of p to compute er. We note
that Carrera et al. (2021a) adopted p = 2.25 and g = 0.5, yielding
even larger values of N? than the largest values considered here.
How radial buoyancy in practice affects the growth of SI modes
and the related clumping of dust at a pressure bump needs to be
clarified in non-isothermal simulations. One may speculate that in
disc regions where gas cooling occurs roughly on the dynamical time
scale, radial buoyancy could increase the minimum particle size that
can lead to planetesimal formation at a pressure bump via the SI.

6.2 DSI in non-isothermal discs

The DSI operates away from the disc mid-plane (Squire & Hopkins
2018) and has been suggested to seed the (standard) SI. However,
simulations carried out by Krapp et al. (2020) revealed that the
DSI only drives weak dust clumping, putting its potential relevance
in planetesimal formation into question. These studies adopted an
isothermal gas and therefore did not include buoyancy effects.

Our generalization of the DSI to non-isothermal discs shows that
it is progressively stabilized by vertical buoyancy (Figs 14, 16) with
increasing cooling time. In the adiabatic limit, all modes, except those
with precisely the wavenumbers that satisfy the RDI condition, are
suppressed. It is unclear if this narrow band of modes can drive
significant turbulence or clumping. Our results, therefore, suggest
that the DSI may be even less relevant for planetesimal formation
than previously shown.

6.3 Effect of dust on the COS

The COS requires an unstable radial stratification (N,2 < 0), which
might be realized at special radial locations in PPDs, such as pressure
bumps, snow lines, dead zone edges, etc., or away from the disc
mid-plane, where the radial gas density profile becomes flatter (see
Section 2.6). In the former cases, dust can also be expected to
accumulate.

We find that dust generally has a damping effect on the linear COS,
where two aspects can be distinguished. For one, tightly coupled dust
added to a non-isothermal gas effectively decreases the buoyancy fre-
quency of the dusty gas when viewed as a single mixture. This damp-
ing effect, however, is only noticeable for dust-to-gas ratios €y 2 1.

Secondly, additional damping occurs if there is a finite cou-
pling time between dust and gas, which originates from the dust-
modification of inertial waves (see Appendix C). These damping
effects result in a disappearance of the COS at sufficiently large radial
wavenumbers, and, if away from the disc mid-plane, in addition
at sufficiently large vertical wavenumbers. The radial cut-off is
described by (87). As such, within the mid-plane, dust raises the
minimum radial length-scale of growing modes (with growth rates
P 1073Q0) by a factor ~10 for €y ~ 1 and Stokes numbers 7 ~
1072 and assuming the optimal cooling time 8 = 1 for the COS. For
smaller/larger cooling times and larger values of the Stokes number
this effect is more severe. In our numerical example away from the
mid-plane, the COS is suppressed for k.H, > 103 (and consequently
for k,Hy = 100, see Fig. 21).

Consequently, in dusty discs away from the mid-plane there is a
lower vertical length-scale limit on the COS, given by (146). For
optimal cooling times 8 ~ 1 and assuming €y < 1 and N> ~ —h}
(Section 2.6) it approximately reads

ho Hy

Veor? 20

kz,culHO ~ (148)
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where z is now the dimensional height away from the disc mid-
plane. The existence of minimum radial and vertical scales suggests
that numerical simulations of the dusty COS should converge with
respect to resolution, as long as these scales are resolved, even in the
absence of dissipation. At the same time, the vertical cut-off length-
scale sets a lower limit for the vertical extent of the simulation region.

6.4 Instabilities resulting from the combined effect of dust—gas
drift and buoyancy: the DCOS

The DCOS (Sections 4.2.2 and 4.3.4) is a new, unique instability
in the presence of radial dust-gas drift and an unstable radial
stratification er < 0. Unlike the COS, however, the DCOS is most
relevant to gas subject to slow cooling (8 > 1, where the COS is
negligible, see Fig. 11). In this limit, there is no physical cooling.
However, a dusty gas in the presence of a radial pressure gradient
exhibits a radial drift between the pure gas (i.e. the entropy carrying
species) and the center of mass of the dust—gas mixture, which
does not drift. This relative drift results in an effective transport
of entropy perturbations of the dusty gas [equation (A12)], which
in turn constitutes an effective cooling, as expressed by equation
(A29). This effective cooling drives instability if N> < 0. Like the
COS, the DCOS grows most rapidly if the effective cooling occurs
on a dynamical time-scale (see Figs D1, D2).

In our examples, the DCOS dominates over the SI for small grains
(t <107") at low abundances (¢( < 1). The DCOS may thus provide
an alternative pathway to planetesimal formation where the SI and
COS are either inoperative or inefficient, for example in the inner
regions of a dust-poor disc. On the other hand, DCOS modes are
characterized by small length-scales (k. .Hy 2 10%), which may be
subject to dissipation. They are also constrained to a rather narrow
‘strip’ in wavenumber space. Nonlinear simulations are required to
assess the relevance of DCOS for dust dynamics.

6.5 Effect of dust in vertically shearing discs: the VSI and DSSI

We find that, near the disc mid-plane, radial dust—gas drift stabilizes
VSI modes below a critical radial length-scale (corresponding to
k.Hy > 10°—10* in our examples, see Figs 17, 18). If the removal of
these small-scale modes weakens VSI-turbulence such that grain
growth is promoted (e.g. by reducing the collisional velocities),
then radial drift would accelerate, and the VSI would be further
weakened. This would then produce a self-sustaining process to
facilitate planetesimal formation.

On the other hand, we find that vertical dust settling in combination
with vertical shear produces a new, unique instability, the DSSI.
At least in the absence of radial dust—gas drift, DSSI growth rates
considerably exceed those of the VSI and the DSI. In principle, the
DSSI can be considered either an enhanced version of the VSI, or an
enhanced version of the DSI. Since it has the same stability boundary
as the VSI (see Fig. 19 and Appendix G), and since it is — unlike
the DSI — not an RDI (Section 5.3.2), it may rather be seen as an
enhanced VSI. Our analysis reveals that (for the parameter values
used here) modes with k,/k, < 100 are dominated by vertical shear,
whereas modes with larger ratios are dominated by settling. On the
other hand, the DSSI exists even in the limit k, = 0, unlike either the
VSIor the DSI, suggesting that the instability is unique. Nevertheless,
which of the two descriptions is more adequate needs to be clarified
in nonlinear simulations. If the DSSI is an enhanced DSI, which has
been shown to lead to dust clumping (albeit weak), the former might
actually be more capable of forming clumps than the latter.
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However, if the DSSI behaves like an enhanced VSl in its nonlinear
state, we can expect it to generate increased turbulence, and hence
increased vertical stirring of dust. In this case, dust settling may be
prevented, which would make planetesimal formation more difficult.

6.6 Caveats and outlook

6.6.1 Thermodynamic equilibrium of dust and gas

A dusty gas, strictly speaking, cannot generally be in a steady,
thermodynamic equilibrium, as the radial gas flow in response to dust
drag would transport the background entropy and drive evolution. In
our model (Section 2.1) we only account for the advection of the
background due to the perturbed flow. That is, we neglect the term
Vo0 - %SO, which should appear on the right hand side of equation
(12). We can estimate the evolution of the background due to gas
drift as

0S8 Ugo €oTnr QK
ot H, H

In the limit g — 0, exact equilibrium is possible since then uyy =
0. The evolution of the equilibrium state should not affect our linear
analyses, as long as computed growth rates are >>|e€otnrQ2x/H,|. For
instance, with typical growth rates of linear COS modes given by
o~ |Nr2} Qg (cf. Section 4.1), this requirement translates to

(149)

|H,| > egtr, (150)

where we used N2 ~ h? and n ~ h?*. For typical dust parameters t
~ 1072 and €y ~ 1072, this condition is fulfilled by a large mar-
gin. Nevertheless, future work should account for this background
evolution in global analyses and simulations.

6.6.2 Dust—gas frictional heating

We only couple dust and gas dynamically via the momentum
equations. Strictly speaking, dust—gas friction also causes heating,
which should be accounted for in the gas energy equation. This
frictional heating of the gas via dissipation of kinetic energy is
described by the term (Laibe & Price 2014)

)= )Odpg !Vd _ ;’ |2
Yy — D (pg + pa) HoroQ o

which should be formally added to equation (12).

Also dust—gas heating generally prevents the dusty gas from attain-
ing a steady thermodynamic equilibrium. However, this equilibrium
frictional heating can, in principle, be balanced by the advection
of the background entropy. If both aspects are included, the energy
equilibrium reads

(151)

9, Sott o + € (Vg0 = Vao)” -0 (152)
PO A e (=1 + phoQordT

Using the solutions for the equilibrium drift [equations (20) and
(23)], the above equation can be written as
N e 772(4—}—860—}—463-!-12)2 R a5y

' (I + €)y(y — Dho(1 + 260 + €5 + 72)

Interestingly, equilibrium can, strictly, only be maintained in the
presence of an unstable entropy gradient N2 < 0.

In the perturbed state, dust—gas heating should also be active
if there is an equilibrium drift. However, we performed example
calculations including the perturbed heating term and found no effect
on the local instabilities discussed in this work. Nevertheless, the role
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of this heating term should be investigated in more detail, particularly
in global settings, and whether or not it can drive instabilities by
enhancing pressure gradients, such that dust drift is accelerated,
which would in turn lead to further heating.

6.6.3 Gas cooling

In this study we adopted a Newtonian cooling prescription for the gas,
so that temperature perturbations on all scales relax at the same rate.
This prescription is useful in controlling the disc’s thermodynamic
response. Physically, it is applicable to the optically thin cooling
regime, where perturbation length-scales are smaller than the photon
mean free path. For a Minimum Mass Solar Nebula (Chiang &
Youdin 2010), Lin & Youdin (2015) estimate that the optically thin
regime applies to length-scales

1< 10_3622/2Hri%/l4H, (154)

where ray is the distance from the central star in au. However, in the
optically thin regime, the dimensionless cooling time is usually 8 <
1, unless the disc is depleted of small grains (see fig. 18 in Lin &
Youdin 2015).

To examine intermediate or slow cooling (8 2 1), typically
applicable to scales larger than that given by equation (154) in
the optically thick regime, one should use radiative diffusion. In
this case, we expect 8 — BIK?, so that cooling times are scale-
dependent. Future work should incorporate a physically motivated
cooling prescription, accounting for both optically thin and thick
cooling regimes, to self-consistently examine how the discussed
instabilities depend on wavenumbers.

7 SUMMARY

In this paper, we study the local stability of a PPD comprised of a non-
isothermal gas and a single species of dust. Our axisymmetric model
incorporates gas cooling, buoyancy, vertical shear, and drift of dust
and gas. As such, it captures a number of known instabilities, namely
the COS, VSI, SI, and DSI. We examine how the gaseous instabilities,
COS and VSI, are affected by dust; and how the drag instabilities, SI
and DSI, are modified in a non-isothermal gas. Results obtained for
the SI and the DSI in the isothermal limit, and for the COS and the
VSI in the dust-free limit, agree well with those of previous studies.

We show that dust introduces a minimum length-scale for the
COS, below which the instability is fully suppressed. At high dust
loading, COS growth rates are also reduced because of the reduction
of the effective radial buoyancy of the dust—gas mixture. Similarly,
we find that radial dust—gas drift sets a minimum radial length-scale
for the VSL

For the SI, we find that radial buoyancy suppresses sufficiently
small-scale modes when the gas cools on a time-scale comparable to
the dynamical one. We show that vertical buoyancy stabilizes the DSI,
except for modes along a narrow band of ‘resonant’ wavenumbers.

Finally, we identify two new instabilities unique to the above
system. First, the DCOS operates in a dusty, adiabatic gas with an
unstable radial stratification. This instability arises from the fact
that gas drift, induced by dust, is able to transport temperature
perturbations, which constitutes effective cooling, even if the gas in
isolation is not subject to cooling. Second, the DSSI arises when both
vertical shear (responsible for the VSI) and dust settling (responsible
for the DSI) are present. In the absence of radial dust—gas drift (e.g.
near a pressure bump), the DSSI is found to have significantly larger
growth rates than either the VSI or DSI alone.
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Whether or not the above instabilities primarily drive turbulence or
can promote dust clumping, and hence their role in the planetesimal
formation, will need to be addressed with nonlinear hydrodynamical
simulations.
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APPENDIX A: ONE-FLUID FORMULATION
FOR DUSTY NON-ISOTHERMAL GAS

In addition to our two-fluid model (Section 2) of dusty gas, we also
consider a one-fluid description (Laibe & Price 2014; Lin & Youdin
2017; Lovascio & Paardekooper 2019). Here we work with the total
density

P = pe+ pu. (A1)
the center of mass velocity

_ PgVg + PaVa
-

v (A2)
P
and the relative velocity
AV =¥y — ¥, (A3)
This implies
Vo =V — f4AV, (A4)
Vi =V + f AV, (AS)
where
Pd €
= —-—= 5 A6
fa b T 1te (A6)
Py 1
= — = N A7
o= = e (A7)

are the dust and gas mass fractions, respectively. Furthermore, we
work with the dust-to-gas ratio (18). The incompressibility condition
(10) in the one-fluid formulation reads

V.-v=V-(fiAV), (A8)
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so the dusty gas is no longer incompressible, unlike the gas in
isolation. The evolution equations for € and v read

(aaﬁ 6) =—(1+e)(vv), (A9)

- - 3 - 1=
( ) = —2Qpe; X [v— (—Eﬂox +qZQUz) e‘} — —VéP
’ 14

$ -
+ <2n Qg@ro — H,.N,2&> €,
14 1Y

804 $ R
+< £110937H2N3%> ‘. (A10)

To arrive at equation (A10) we multiply equation (11) by p, and
equation (17) by py, add the two equations and use equations (A1)
and (A2). We also drop terms of O(AV?), assuming it is negligibly
small for tightly coupled dust. Furthermore, from the equation for
the velocity difference [cf. equation (14) in Laibe & Price (2014)]
AV in the terminal velocity approximation (TVA) we find

- 1 " S, -
AV = 1, (fvap — 20 Q1o fo8x + P (H,Né, + H.N?¢,)
P o

+ 1+ eo)zoﬂéfgéz) (A11)

In order to arrive at (A11) we subtract equations (11) and (17). In
the resulting equation for Av, we expand (since T < 1) AD —
AT 4+ O(1?) and balance terms to zeroth order in t (Lovascio &
Paardekooper 2019).

Thus, in the TVA, the dust is assumed to relax to its terminal
velocity instantly and dust—gas drift is attributed to the differential
forces that act on the dust and gas. Note that for axisymmetric
systems there is no azimuthal velocity drift in the TVA. The
above expression contains additional terms compared to the original
expression provided in Youdin & Goodman (2005). These terms are
related to buoyancy and vertical dust settling.

Using this expression and the above definitions, we can rewrite
the gas energy equation in the one-fluid formalism as

4] L = 1 1 1
<a v V) %5 = = 00 Peo <ﬁ,5“ * E‘“")
1 Q%Eo
(14 €p)?

1
— Pgo (ES(fdAu) + E(S(fdAw)) . (A12)

(2170080 + (1 + €0)200:8p;)

where
Jao (1 —€o) Jao 2)
3(faAu) =t 0. 8P — 2nQr 6—}——8 H,N; |,
(falAu) ( o n (1 T ey Pg
(A13)
3(fyAw) = zx(f"oa 5P + Q22 Qa e+ 050 HN )
"+ e)? Po
(Al4)
A1 One-fluid equilibrium
The above set of equations yield the equilibrium
€9 = const., (A15)
2€09: 720820
= AR Al6
ug Tt e (Al6)
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€0T2020
=" Al8
Wo 1+ ( )
and
20t
Aug = — Z1T220T0, (A19)
1 —+ €0
Avg = 0, (A20)
Awy = 1700, (A21)

which are the velocities relative to the background shear flow
(—3x + g.2) Q. Compared to the two-fluid equilibrium (Section
2.2), terms which are oc 2 are neglected. Consequently, also Avy =
0 in the one-fluid formulation.

A2 One-fluid linearized equations

The (scaled) linear perturbation equations are obtained in the same
fashion as those of the two-fluid equations in Section 2.4. From the
linearized incompressibility condition (A8), we obtain the pressure
perturbation

(1 + o)2

5P = é (H, N2k, + H.N2k.)8pg — ——22 (k,u + k.5w)

(=14 €)(=2nk, + (1 + GO)kZZO)SG
€o(1 + €p)

(A22)

We note that equation (A22) is not valid in the limit reqg — O.
That is, in this limit, equation (A8) cannot be used to compute the
pressure perturbation 6P. In that case, the dusty gas then becomes
incompressible with

kx

Sw = ——du.

; (A23)

Using this relation we can linearize the x — and z-components of

the momentum equation (A10) and combine these to obtaind P The

resulting expression can then be used in equations (A25)—(A28).
The remaining linearized equations are

ode = —i(l + €o)(kSu + k,dw) — i(keug + k,wo)de, (A24)
N2 . ik,
odu = —1 éoﬁpg + 286v — i(kyug + k,wo)du — T EOSP
2n
——— ¢, (A25)
(1 + 60)2
1
odv = _EM — i(kyug + k;wo) — g 8w, (A26)
5 Z 5o, — i(ketto + ko) ke gpp s
olw = — —i(keu LWo)dw — ,
1+€() pg 0 =70 1+€0 1+€0
(A27)
1 1 1 €T 2 2 .
odp, = ﬁﬁu + ﬁSw + 80, | — E — m(N, + N +2ink,)

i + ko) i€gtk,zo i€gT ky + k. 5P

—i(kyu <Wo) — - —

A e P, (I+e)? \H ' H

~1 2

_Clte)r ( n__ ﬁ) se. (A28)
(1+€) \(1+e€)H H
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From the energy equation (A28) one can define an effective cooling
time of the dusty gas (see also Section 4.3.3)

1 2negtk, eotk, 20
e = —_— k\- k7 =
Betr [,B+ ((] 0)2+,M0+\,w0+1+€0>
-1
€0T H, 2 2 H, 2
PPN XMz N - x Mz N, )
+(1+€0)2({M, .U«.U«H] ,+{H«x uer &

(A29)

where we used (A22) to replace the pressure perturbation §P. This
effective cooling time is generally different from the pure gas cooling
time B, and in particular, is generally complex-valued. In Section
4.2.1 we show that the presence of dust can either give rise to a quasi-
thermal instability, or enhance the cooling rate compared to a pure
gas, depending on the sign of N2. Furthermore, a complex cooling
time implies a phase shift between the gas density perturbation and
the cooling term, and can give rise to the DCOS, as discussed in
Section 4.2.2 and Appendix D.

APPENDIX B: INERTIAL WAVES IN THE
PRESENCE OF VERTICAL BUOYANCY,
VERTICAL SHEAR, AND COOLING

In this section, we investigate linear modes in a pure gas disc with
vertical buoyancy, vertical shear, and cooling. These are governed by
the cubic dispersion relation, equation (98), and we shall find that they
have a non-trivial dependence on the cooling time 8. The solution
method outlined in Section 4.1 assumes complex roots, but there
also exist purely growing (or decaying) modes with o; = 0. For one,
this is the cooling mode. Generally, if we assume sufficiently small
values of 8, such that |0 8| < 1, equation (98) can be approximated
by the quadratic dispersion relation

o’ + BEo + 2 =0,

such that the cooling mode has been discarded, but the effect of
cooling on the remaining solutions is retained. The latter solutions

read
1 ky
o= —JWINBE S \/MiN?ﬂz — 42 (1 - 2512,7) (B1)

These are either real- or complex-valued, depending on the sign of
the discriminant. We conclude that if the discriminant is negative, the
solutions describe inertial waves modified by buoyancy and vertical
shear. On the other hand, the solutions are non-oscillatory if it is
positive. Note that (B1) agrees with (109) to first order 8. Thus, a
bifurcation should occur for a specific ratio of radial and vertical
wavenumbers, k, pie/k;, for which the square root vanishes. At this
bifurcation, the complex conjugate pair describing inertial waves
with identical decay rates will become a pair of non-oscillatory modes
with different decay rates. In the case ¢, = 0 we readily find

kevir | [4+2BNY 2
o e S e (B2)

In the limit k, > k,, equation (B1) yieldsc =0ando = —,BNZZ. The
case g, # 0 yields a quartic equation for k, i, such that solutions
must be obtained numerically.

To anchor our discussion, we compute numerical solutions with
vertical buoyancy N? = 0.28 and possibly with vertical shear g, =
0.05 (see Section 2. 6) Fig. B1 shows all of the three growth rates
and corresponding frequencies resulting from the cubic dispersion
relation (98), for increasing cooling time B from left to right as
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Figure B1. Numerical solutions for the three pure gas eigenvalues resulting from the cubic dispersion relation equation (98) with sz =0.28,H, = —0.11, and

er = 0 (growth rate o g and frequency o). Generally, these are the cooling mode (cyan curve) and a pair oscillatory modes (black and orange curves), which
for small &, are inertial waves. The upper (lower) two rows consider solutions without (with) vertical shear g, = 0.05. The open circles represent the analytical
solutions (B3) and (B4) for oy and o g, respectively. For cooling times 8 < 1 the inertial wave eigenvalues undergo a bifurcation at a given k, = k,, pir, Where
the growth rates ‘fork’ into two different values and the frequencies drop to zero. We find that for 8 < 0.6 (including the first two columns) the value of k pif
is well described by (B2). For 8 ~ 1 the cooling mode starts to drop to smaller values and eventually vanishes with increasing k,, via a prior merging with one
of the inertial waves modes (third and fourth columns). In the adiabatic limit (the last column), the three modes are again clearly distinguishable. Note that for

. =0.05and B 2 1 there exist oscillatory modes (with o; # 0). This is in contrast to the isothermal limit and explains the occurrence of a lower resonant DSI

‘branch’ (Fig. 16).

indicated. Furthermore, the plots in the upper and lower rows are
computed without and with vertical shear, respectively.

Let us first consider the panels with § = 0.001, corresponding to
the isothermal limit. The calculation with g, = O produces a pair
of decaying inertial waves with oscillation frequencies of £1 in the
limit k£, — 0, which are represented by the black and orange curves.
In addition, the cooling mode appears (the dashed cyan curve), with
vanishing frequency o; = 0 and with a large decay rate oz = —103,
far outside of the displayed region. In this and all other panels with
q. = 0 the circles represent the analytical expressions

2 2 N2 2 2
o; = %4 p2+ uiN2 + BUR + 30}, (B3)

BNZ2u?

- , B4
2T (a4 V) 4 1 Y

Op =

which are the frequency and growth rate of pure gas inertial waves
following from (74) and (75) using

kK + N2k2
= (BS)
In this case, these expressions agree well with the numerical result.
The same holds for the solutions described by (B1) (not shown).
If g, = 0.05 (lower panels) the two VSI modes (one growing and
one decaying) emerge for sufficiently large k,, the latter determined
by the condition g, > 0 [equation (110)]. We note that for small k,
the frequencies with and without vertical shear are identical. Only
if g, = 0 the frequencies with g, = 0.05 sharply drop to zero [local

VSI modes are non-oscillatory (Latter & Papaloizou 2018)].
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The panels corresponding to 8 = 0.1 show an interesting result.
We first consider the case g, = 0. The eigenvalues of the pair of
inertial waves appear to undergo a bifurcation at a given k,. This is
most clearly seen in the growth rates o g, which start to ‘fork’ into
two distinct curves around k. H, ~ 800. For these wavenumbers, the
frequencies drop to zero. With ¢, = 0.05 this bifurcation results in the
two VSI modes, similar to the case with § = 0.001. In particular, this
bifurcation is not described by the analytical expressions (B3) and
(B4). The reason is that the method used to derive these expressions
requires modes to be oscillatory. However, it is accurately captured
by the solutions (B1) (not shown).

Around cooling times 8 ~ 1, the eigenvalues show an even more
complicated behaviour. The third column shows the eigenvalues with
and without vertical shear for § = 0.924. Here we see for g, = 0
(the upper panels) that the cooling mode (the cyan curve) decay
rate decreases, such that it approaches the decay rate of one of the
two inertial waves (the black curve). In the case with g, = 0.05
(lower panels) the two curves already start to merge in a complex
manner for this value of 8, resulting in another bifurcation. The same
happens for the curves with g, = O for a slightly larger 8. For an
even (slightly) larger value 8 ~ 0.940 the cooling mode decay rate
becomes identical to the decaying inertial wave’s decay rate for a
given k,, as seen in the fourth row.

Our interpretation of the situation with g, = 0 is that for sufficiently
large k,, a pair of decaying inertial waves exists, whereas the cooling
mode disappears. That is, the cooling mode attains ogp = oy = 0
at large k.. This is more clearly seen in the case with 8 = 103 (the
last column). We speculate that the cooling mode disappears once its
decay rate coincides with the decay rate of one of the inertial waves.
In the presence of vertical shear g, = 0.05, we speculate that the
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cooling mode becomes the (non-oscillatory) growing VSI mode for
B = 0.940. It is also noteworthy that for 8 = 103 the frequencies and
decay rates of the inertial wave pair are again correctly described
by the analytical expressions (B3) and (B4). Thus, deviations from
these expressions occur at intermediate cooling times § ~ 1. The
complex behaviour around 8 = 1 is not captured by the quadratic
solutions (B1) either, which we find to be accurate for 8 < 0.6.

Nevertheless, while a thorough analysis of these modes, which
might or might not confirm our speculation is beyond the scope of
this paper, we notice that for 8 2 1 modes with positive and negative
frequencies exist for large k, in the presence of vertical shear. This is
not the case for smaller B (see the left three columns). The presence
of these modes explains the occurrence of a lower resonant ‘branch’
of DSI modes in Fig. 16, which indeed requires the presence of
pure gas waves with negative frequency based on the RDI concept
(Section 3.2).

APPENDIX C: DAMPING OF INERTIAL WAVES
BY DUST-GAS DRAG

In Section 4.2.2 we described the effect of dust on linear COS modes
in the disc mid-plane and argued that two effects can be distinguished.
One effect is that dust leads to an effectively reduced buoyancy
frequency, resulting in an overall reduction of the growth rates. In
addition, COS growth rates experience a cut-off beyond a critical
radial wavenumber. Furthermore, in Section 5.4 we found that away
from the disc mid-plane an additional cut-off occurs beyond a critical
vertical wavenumber.

Here, we derive analytical expressions for the damping rates of
inertial waves in a dusty gas, explaining the radial and vertical
wavenumber cut-offs. Since the damping mechanism leading to
these cut-offs does not rely on buoyancy or cooling, we can neglect
these aspects here, i.e. we set Nf/Z — 0 and H,;, — 00, such that
H, /erz/Z — 0, and discard the energy equation, which simplifies the
analysis.

To proceed, we consider a region at distance zo > 0 away from the
disc mid-plane. Numerical experimentation with the full eigenvalue
problem (49) reveals that it is not the vertical dust-drag term [the
term o wyq in equation (48)], but the dust’s vertical advection terms
[the terms o< w4 in equations (43)—(46)], which result in the vertical
wavenumber cut-off. Therefore, the vertical drag-force term in (48)
is ignored. It should be noted that the advection of dust in the vertical
direction (with velocity w o) describes a drift between dust and gas,
which is mediated via drag forces, i.e. terms o §V; — 8V,.

Furthermore, we omit the radial pressure gradient (n = 0), which
would otherwise result in a radial drift between dust and gas, and
which would also trigger the SI. This approximation is valid in the
vicinity of a pressure bump or generally for €y < 1. This also implies
that at sufficiently large heights zo, where we indeed expect €y < 1,
the effect of the pressure gradient becomes negligible compared to
the effect of vertical dust advection (Squire & Hopkins 2018)

We thus consider the equations

€0 .
o8y = 280y + — (Sug = Sug) — ikcSP, (€D
1
0Bv, = =30+ = (Sus = 8v,) (2
T
1
oduy = 28vy + — (Sug — 8ud) — ik, wyoduy, (C3)
T
1 1 .
O'SU,} — _E(Sud + — ((Svg — (Svd) — zkzwdoavd. (C4)
T
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The pressure perturbation is now given by
5P = L [—2k6v, — < (kybug + kzawd)] , (C5)
k? T
From the vertical dust momentum equation (46) we obtain
ke 8
Swy = — 218 (C6)
kz 04,z
where we define
Oy, =0T +ias,7+1 (C7)

with a4 . given by (118), describing vertical dust advection. From
equations (C1) to (C6) we then derive the fifth-order dispersion
relation

0= (aead_z — 60[1)2() [(3jz + 12) O — eo/a\dyz]

—12 [~ (6], + (2€0 + ©2) Ga2) + €06) ,0c — €25a.] . (C8)
where we additionally defined
0 =0T+ ¢ (C9)

to shorten the notation.
Similar to Section 4.2.1, we apply a series solution for the
eigenvalue

a=00+011'+0212+037:3+...

which we insert into (C8), and the latter is then solved order by order
in 7, yielding the solutions

oy = Fipu,, (C10)
o = S0 (15 = 2kz0) 11
2(1+€o)
gy — o 00 (4= 50) —4ud) g c12)
8(1+€0)” . ’
€0 4 22
= ———— [~ (3 +2€0) ut — 2k2z
03 0t [—€o ( 0) Ay 220
+ui (14 € — 3ik.zo + €0 (2 — ik.20))] . (C13)

For perfectly coupled dust (z = 0), we recover inertial waves with
oscillation frequencies .. The terms o, 07, 03, etc. then represent
the effect of finite dust—gas drag on inertial waves. From these we
obtain the damping rate

eon’t eok2z3t’
2(14+€) (1+¢€)’

OR X (C14)

where we neglected relative corrections of O (t?) to the first term

which are independent of zg. In the limit zo — 0, we recover the

dusty damping term appearing in the approximate COS growth rates

(85) and (89), resulting in the radial cut-off (87). On the other hand,

the damping term o z, results in the vertical cut-oft (146).
Furthermore, the wave frequency is given by

€1 [4 + € (4 — 5u§) — 4M§] uf
8(1+ ) '

We note that (C10)—(C15) are not valid in the limit k, — 0. In this
limit the entire last bracket in (C8) vanishes and we find that oy and
o0,, and hence o; vanish, since inertial waves cannot exist in this
limit. Nevertheless, for small &, the frequency o, can in principle
take large values. However, we expect the fluid approximation for
dust adopted throughout this paper to break down once |o;7| 2 1
(Jacquet et al. 2011).

(C15)

U[:ﬂ:

4
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Figure D1. Contours of maximum linear growth rates of a pure gas
(across the same wavenumbers as in Fig. 5) obtained from (70) with
N,2 = —0.01 and an effective, complex-valued cooling time (D1). As ex-
plained in the text, the COS is increasingly enhanced for a cooling time

Ag =+/Re(B)? +Im(B)> =1 and an increasing phase delay 0 < g =
arctan Im(B)/Re(B) < m/2 between the cooling term (D2) and the gas

entropy perturbation §p, (or decreasing to —/2 for the corresponding other
inertial wave), occurring in the one-fluid energy equation (A12). The over-
plotted curves show the evolution of the effective cooling time (95) of a dusty
gas for increasing 0 < kyHy < 10° (indicated by the arrows) for three different
values B = 1,4,20 and 7 = 1072, €9 = 0.03. These curves illustrate how
with increasing 8 the maximum growth rates of the DCOS increase, and at
the same time the domain of largest growing modes in ky-space shrinks.

APPENDIX D: SIMPLIFIED MODEL FOR THE
COS AND THE DCOS

In Section 4.2.2, we discovered an instability of a dusty gas
possessing long cooling times S > 1, requiring both an unstable
entropy gradient N> < 0 and a background radial pressure gradient
n # 0. We hypothesized that this instability is a dust-induced version
of the COS, i.e. the DCOS.

In this appendix we show using a simple ‘toy’ model-which
captures the physics essential to the classic COS in a pure gas-that the
latter is actually amplified if one allows for a phase lag between the
cooling term and the density (or entropy) perturbation §p,. Indeed,
equation (95), which is the effective cooling time of a dusty gas within
the parameter regime considered in Section 4.2.2, implies

Betr = Apexp [igp] . (D1)

such that the effective cooling term becomes
1 .

Acerr = ———exp [—igy] dpy, (D2)
B

with a cooling time Ag and a phase lag ¢z of the cooling term with
respect to the density perturbation §p,.

In Fig. D1 we present maximum growth rates of inertial waves in
a pure gas obeying equation (70) in absence of vertical buoyancy,
and with B replaced by equation (D1). We consider a range of
cooling times 0 < Ag < 10, and phase lags —7/2 < g < 7/2. In
this figure the real positive axis corresponds to the classical (pure
gas) COS without a phase lag and where the growth rates are largest
if B = 1, as expected. However, we find that the growth rates are
enhanced compared to the classical values with Ag = 8 = 1 in
case of a phase shift 0 < gg < 7/2. This applies to one of the two
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Action Integral

0.01 0.10 1.00 10.00 100.00
A
B

Figure D2. Values of the action integral (D8) for different values of the
phase shift g and for varying amplitude Ag, appearing in (D6) and (D7).
The plot shows how with ¢ — /2 the maximum value of the action integral
(and hence the COS growth rate) increases, and at the same time the curve
sharpens. Note that for ¢ = 5/11x the integral rapidly increases. On the other
hand, phase shifts ¢ > 7/2 result in negative values, signifying a decay of
COS modes, as illustrated by the curve with ¢ = 3m/4. The classic COS
with vanishing phase shift ¢ = 0 is represented by the black curve. The plots
assume a dimensionless wave frequency w = 1.

COS modes, while the other mode is being damped. For a negative
phase lag, the situation is reversed. The growth rate of the amplified
mode maximizes for ¢g — 7/2. This is in agreement with simplified
model calculations presented below. We note that the COS is entirely
extinguished for 37/2 < ¢g < 7/2 where the real part Re[B] < 0.
In this parameter region the cooling mode would give rise to thermal
instability (cf. Section 4.2.1).

The trajectories in Fig. D1 show the evolution of B¢ corresponding
to (95) with increasing radial wavenumber k, for three different
values B = 1, 4, 20. Hence, the curves trace the corresponding
maximum (across all wavenumbers) COS growth rates with 8 given
by (D1). This figure explains qualitatively the behaviour of the DCOS
displayed in Fig. 5 for increasing k, through an increasing phase lag
between gas cooling and entropy perturbation. Particularly, the larger
B, the closer the achieved phase lag is to 7/2, which gives rise to
a larger growth rate. The phase lag also increases with increasing
particle Stokes number, and maximizes for a dust-to-gas density
ratio €p = 1.

In order to show that a phase lag between the gas density
perturbation and the cooling term does indeed amplify the COS
we consider here a simplified linearized entropy equation for a pure
gas

0

1
o —8pg — Sutg, (D3)

IBeff

where we assumed a negative entropy gradient (H, < 0) and absorbed
its magnitude into § p, for notational brevity. Furthermore, we assume
a plane wave solution

pg = —

duy, = expliwt], (D4)
with frequency w. For the density perturbation we use the ansatz

Spg = Aexpli (ot + @)]. (D5)
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Inserting the above expressions into (D3) and solving for real and
imaginary parts separately results in

Ao (w— sin<pﬂ>2+ (cosq)ﬁ)2
Ap Ap

-4 o]
¢ = arccos | —— cos @g | .
Ap

—-1/2
) (D6)

(D7)

Now let us recall that the COS relies on the circumstance that a gas
parcel that moves radially outward from its original radius will get in
contact with colder material such that it will deposit some of its excess
entropy during the first half of the epicycle. When it has returned to
its original radius it is colder (and hence denser) than its surroundings
and will therefore experience an inward buoyancy force. One can now
argue that the instability should generally be promoted whenever a
gas parcel is denser than its surroundings during its inward motion
and when it is less dense than its surroundings during its outward
motion. That is, Re(6p,) and Re(Su,) should be anti-correlated (cf.
Section 3.1.1).

We therefore propose that the optimal cooling time for the COS is
the same cooling time for which the action integral

27 /w
W=-— / dr Re [8p, ] Re [u,]
0

(D8)

will be maximal.

Fig. D2 shows the value of WV for a number of complex cooling
times and dimensionless frequency @ = 1. The interpretation is the
same as described above. Namely, the amplitude is the actual cooling
time and the complex phase corresponds to the phase lag between
the gas density perturbation and the cooling term in equation (D3).
Thus, for increasing ¢ cooling will be increasingly delayed. Note that
for simplicity here we describe only the behaviour of one of the two
inertial waves present in the gas, determined by our ansatz (D4) with
w > 0. Therefore, only positive phase lags lead to an amplified growth
rate, in contrast to Fig. D1, which encompasses both inertial wave
modes. Nevertheless, Fig. D2 illustrates, similarly to Figs 5 and D1,
that a phase lag of ¢ ~ 7/2 is optimal for the COS, together with a
cooling time Ag = 1. Moreover, the ‘symmetry’ of COS growth rates
around the optimal value Ag = 1 [which is clearly seen in Fig. 11
(right most panels)] is also explained using this simple model, as well
as the occurrence of a peak for ¢ — m/2. The latter corresponds
to the narrowness of the unstable ‘branch’ in Fig. 5. Moreover, the
model also predicts that for ¢ > /2 the COS is extinguished, in
agreement with (76). Note that the optimal cooling time for the COS
is actually Ag = 1/w, such that slower oscillations require slower
cooling and vice versa. This is the reason why the optimal k, for
the DCOS (Fig. 5) becomes smaller for decreasing k., as the inertial
wave frequency drops to values <1. Note also that all growth rates
drawn in Fig. D1 correspond to a wave frequency w = 1 by selection
of modes with appropriate wavenumbers k, > k..

APPENDIX E: SIMPLIFIED MODEL FOR THE
DSI IN PRESENCE OF VERTICAL BUOYANCY

In this appendix we use equations (111)—(117) to derive an analytical
expression for the growth rate of the DSI including the effect of
vertical buoyancy. As explained in Section 5.2.1 we set n = 0, and
ignore drag force terms o 8V, — 8V,. Furthermore, radial buoyancy
is omitted. We then rewrite the aforementioned equations as:

odu, = 2M§5Ug + iy (HZNfSpg — ?(Spd) , (ED)
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1
odv, = —Eéug, (E2)
ke 1
0p8pg = —k—ﬁ(Sug, (E3)
G4 0ug = Sug + 2780y, (E4)
. 1
04,,8vy = 8vg — 51:81”, (ES)
~ ks
04 0Wy = —k—Sug, (E6)
(O’ + iad’z) Spa = —i€g (kyduy + kzéwd) s (E7)

where we used (C7) and (118) and defined

og =0+ —.
’ p

From these equations we directly derive the dispersion relation

. g o~ o~
(0 +iaa.) |0 +u? + uﬁNfa (6] .+ °Ca.] E8)

+ Miiéokzwdo [a\d,z + UT} =0.

This equation is too complex to proceed analytically. We therefore
assume that the gas is adiabatic (8 — oo) such that g — o, and
that |a; .7| < 1 and |ot| < 1, on account of tight coupling between
dust and gas. This implies 6, — 1 and allows us to write

o’ + iad’zaz + (Mz + ,uiNZZ) o+iay, [Mi (N2 + 60) + M?] =0,
(E9)

which is a cubic equation in o, such that analytical solutions can be
found (for instance by using computer algebra).

The pair of modified inertial waves representing the DSI following
from (E9) is described by the eigenvalues

2% (H:iﬁ)c

1
0D51=*[—4iad,z+ +2% (—1ii\/§)x%},

12 X3
(E10)

where

X=—-iA+<vVB (E11)
with

A =ay, [27eoul +18 (u? + niN?) —2a; ] . (E12)
B = 4C3 — A?, (E13)
C =3(u+uiN)+aj.. (E14)

It can be easily verified that equation (E10) reduces to o = £iu, (as
expected) in the limit N> — 0 and a,,; — 0.

We now proceed to compute the growth rate oz psi = Relopsi].
By applying basic algebra on (E10) we find

23 (cos¢ + ﬁsiann)
12

1 C
L
3

(%)

where we find that formally two cases need to be distinguished:

7
{mm={A+¢mf§}

{x. o} = {\/m %(arctan ;—% +4rr)} ifB>0. (El7)
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(E15)

OR.DSI =

ifB <0, (EI6)
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However, for B > 0, we have x = V4C? which readily yields
o, ps1 = 0 from (E15), as the expression inside the bracket vanishes.
This implies that growth can only occur for B < 0.

From now on we will restrict our attention to wavenumbers k, >
k; such that u, — 0 and p, — 1, which simplifies the calculation.
Specifically, we wish to verify analytically that the region in k.-
space within which the DSI exists becomes increasingly small and is
concentrated around %, s [equation (128)], as indicated by Fig. 15.

To proceed, we will first find the vertical wavenumbers k, for
which B = 0, as these delimit the region of positive growth rates.
By setting B = 0 one can derive from equations (E12) and (E13) the
quadratic equation

Y108 [N + &) + v [108N! = (27eq + 18N2)7] + 108N2 = 0,

where we defined y = a] _, with aj _ given by (118). The solution of
this equation is represented by the pair

2762 + 36€N2 + 8N* £ /€ (9 + 8N2)°
at, = S O NI E)
” 8 (E() + NZZ)

In the limit sz > €9 we find a;fz — N, such that indeed k, —
N_/(tz0) = k;, res- This means that with increasing vertical buoyancy
N2 the region of growing modes in k -space shrinks toward the
resonant wavenumber (128).

Finally, we want to show that the maximal value of the growth rate
is independent of the value of N,. In the aforementioned limits we
have a4 . & N, and expressions (E12) and (E13) read

A =27¢N, + 16N, (E19)

L 2T .
16NZ2
since sz > €, such that B < 0 as expected. Hence we have
X =A++/I|B|
= N. (16N? +27¢)) + 12+/6€9N?
~ 16N2 + 121/6€)N?, (E21)

and

B = 256N? {1 - (1 ~ —864€) N, (E20)

since N, > /€, and thus

1S Vo
x5 = 1653 NE |1+ 3v6eo ~ 1653 N |1+ b .
z 4Nz 4 4NZ

(E22)
Using (E16) we find from (E15)
1
(e} = —
R,DSI 23

which, using (E22), readily yields the growth rate (129).

APPENDIX F: EFFECT OF RADIAL DUST-GAS
DRIFT ON THE VSI

As outlined in Section 5.3, an equilibrium radial dust—gas drift has a
damping effect on the VSI. In order to show this, we use equations
(130)—(133) to derive an approximate dispersion relation for VSI
modes in the presence of a background dust-gas drift. Here we
consider the isothermal limit without buoyancy and delete the gas
entropy equation. Furthermore, as explained in Section 5.3.1, we
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neglect terms involving dust density perturbations, 8p,. First, we
rewrite the aforementioned equations, such that

5 2 2 2 dug

Go xSty = 2T 8V, + €0 | p78uqg + 115 = , (F1)
d,x

Ty Vg = €00vy + g, TSy, (F2)

8dyx5ud = 5L£g + 2‘[51},1, (F3)

- 1 ky Sug
04,x0Vg = vy — Eréud — qzrz 5

, (F4)

where we used (46) to replace the vertical dust velocity in (F1) and
(F4), and where we defined

Ougx =0T +iag,T+1, (F5)

Ogx =0T +iay T+ €, (Fo)

with a4 . given by (135), describing radial dust advection, and
similarly

g x = kxugO, (F7)

describing radial advection of the gas. In what follows, we formally
assume that the quantity

Edw = adyxr ~ 1, (Fg)

affording sufficiently large values of k,. On the other hand, since we
assume €y < 1 we neglect |a, | ~ €glag, x| < |ag «|. Note that any
common background drift of dust and gas can be absorbed into o,
and only leads to a frequency shift of the modes. It is only the relative
drift a4, « — ag, » which can result in a possible damping of the VSI.

From equations (F1) to (F4) we find the dispersion relation

0 = (Gg.x8u.x — €o17) (€00ux = Gy (6o +7°])

+227°q.04 (07, + 77 + €0)

—M§60 (GOEd,x - &g,x [afg + 72] - 251'[2 [8d,x + &g,x]) , (F9)
which is of fifth-order and is formally written as
co+cio+...+cs0°=0.

In order to make analytical progress we first expand the coefficients
Co. . . cs5 to second order in . We find

co = exas, —2A% 2.7 (F10)
¢1 = 2440y 1€t (F11)
o = A2 7% (F12)

where we also used €g < 1 to further simplify the coefficients, and
where we temporarily define

Agx = —i+dgx, (F13)

to shorten the notation. The remaining coefficients cs, ¢4, and cs
vanish, since these are of orders 73, 7%, and ©°, respectively. The
corresponding quadratic dispersion relation can directly be solved.

Its solutions are [replacing ;\Vd,x using (F13)]

o = tu/2q, — (F14)
(—i+a.)T

The first term is the isothermal pure gas VSI growth rate, whereas the

second term describes the effect of dust. Splitting the second term

into real and imaginary parts readily yields (134).
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APPENDIX G: EFFECT OF VERTICAL DUST
SETTLING ON THE VSI - THE DSSI

G1 Growth rate of the DSSI for general wavenumbers

Here we use equations (137)—(141) to derive an analytical expression
for the growth rate of the VSI in the presence of dust settling. As
outlined in Section 5.3.2, here we ignore radial drift between dust
and gas and consider the isothermal limit without buoyancy effects.
First, we rewrite the above equations into

odu, = 2,u§8vg — /Lxuzgépd, (G)
o8v, = q:8u,, (G2)
6'\‘1’2514‘1 = Bug + 2T5Ud, (G?’)
Gaub00 = Svg — oug + qo e e, (G4
a £ k. G
8
(O’ + iad’z) S8pa = —i€pky (Sud — ,\ug> s (GS)
Od,z

where we again used (46) to eliminate w, from the equations, as
well as (C7). From the above equations, we obtain the dispersion
relation

(o +iaq.) (0> —2u2q.) (G;. + T°0u.:)
—2u3a,;i€q. (Ga. +o0tT) =0. (G6)

In the limit of vanishing vertical shear (g, — 0), equation (G6) is
identical to (E8) in the limit of vanishing vertical buoyancy N, f — 0.
If we assume |o7| <« 1 and |a,, .| < 1, then we obtain the cubic
dispersion relation (142).

An analytical expression for the growth rate of the fastest-growing
mode resulting from (142) is given by

2% cosf 1 C
OR,DSSI = X3 [1— 3 (G7)
‘ (3
2

In this expression:

x =|a+ViBl. (G8)
with

A= —ay. (54€0piq. +3612G. +2a] ). (G9)
B = 4C* — A2, (G10)
C=a;. —6u2q.. (G11)

For growing solutions, which require B < 0 (see below), the angle 6
in equation (G7) is given by

if A+ +/|B| > 0,
5
6 = ?” ifA+/B| <O0.

If a; . — 0 (no dust settling), we have A = 0, B = 4C> and hence
x = 24/|C3|. Using § = —x/6 we recover

b 4
0 =—— G12
5 (G12)

(G13)

ORDSSI = MUz V 24z, (G14)

which is the isothermal pure gas VSI growth rate [cf. equation (107)].

Similar to the case of the DSI described in Appendix E, one finds
that o g psst = 0 if B > 0, which for brevity will not be discussed
here. The condition B = 0 distinguishes between stable and unstable
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systems, but the explicit expression is rather involved. However, from
(G9)~(G11) it can directly be shown that the term (4C3 — — — A?)
g and therefore ¢, = 0 is one solution, equivalent to the threshold
for the pure gas VSI (cf. Fig. 19).

G2 Growth rate of the DSSI in the limit of small vertical
wavenumbers

Our numerical results in Section 5.3.3 show that in the presence of
both vertical shear and dust settling, instability persists for small ..
Here, we formally consider the limit k, — 0, for which we can obtain
simple analytical expressions for the growth rate and the frequency
of the DSSI, unlike for the case of general wavenumbers, considered
in Appendix G1. Note that for k, = 0, the VSI, DSI, and the SI all
vanish.

Compared to (G1)—(G5) we start here from a slightly more general
set of equations, where all drag force terms are retained, and where
we do not a priori neglect radial and azimuthal drift between dust
and gas. We do, however, as in Appendix G1, set n = 0 so that there
is no contribution to dust—gas drift from the global radial pressure
gradient. Due to incompressibility (47), we now have Su, = 0. As
before, we assume that the gas is isothermal (8 — 0).

Thus, we now consider the set of linearized equations

(0T +iag,t)8ps = —iepk,TéuUy, (G15)
040Uy = 218vy, (G16)
08V = Svg — %réud — q; 18wy, (G17)
G4 Swy = Swy, (G18)
O 8V, = —q,T8W, + €08V, + Sps Avy, (G19)
O 8wy = €0dWa + Wadpy, (G20)

where 6, , and &, , are given by (F5) and (F6), respectively. From
(G18) and (G20) we find

Wdo

k) = 804, G21
s = (ot +iaget) (1+20) (G2D)
where we defined
Q=2 (G22)
04 x

and where we assumed a4, = 4, \, such that radial drift between
dust and gas is ignored. This is justified since we assume n = 0. We
are now left with equations (G15) and (G16), as well as

4:TWao

T

G40V = 8v, — —Suy — 8pq, (G23
d,x9Vd g > d (UT + l’ad'X‘L') (1 + /6\0) (/)'\d,x Ld ( )

~ qzTWq0

04,0V, = €08vy + Avodpy — (G24)

—3804.

(7 +iag. o)1 +e) " °

We now assume 07| < 1 and |a, 7| < 1. From (G16) we then
obtain

Sud = 2T8Ud. (G25)
Next we combine (G23) and (G24) to get
(U‘L’ + iad,xr) (eoﬁvd + SUg) = —€0T28vd
+ (Avo - M) 5pu. (G26)
0T + 104 4T

where we also used (G25). Finally, we assume that the perturbed
azimuthal motions are tightly coupled (i.e. v, ~ §v,) and use (G25)
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and (G15) to arrive at the cubic dispersion relation
~ 3 ~ .
(Jdﬁx - l) (eo+1)=— [Avo (od.x - l) - qzwdor] ik, €oT?,
(G27)

where we used (F5) to shorten the notation. This equation possesses
three roots. The (exact) eigenvalue of the fastest-growing mode reads

1 1
Dieok, A keq-wao)’ X3
o = —ikpugy — — KAV, (okegewuo) (G28)
(Beokrg wa0)3 X3 35(1+e)
where
X = —9i (1 + &)’
8ok, AV
+ 31+ eo)<3/2>\/ —27(1 + ) — im0
(QdeO)
A~ —18i (1 + ). (G29)

In the last step, we neglected the second term in the square root as it
is much smaller than the first term for all wavenumbers &, considered
here. Physically this implies that the effect of azimuthal dust—gas drift
(expressed through Avy) is much smaller than the effect of vertical
dust settling (expressed through w,g) in the current situation. We
also assumed that g, w 4 < 0 (positive (negative) vertical shear below
(above) the mid-plane). Using (G29), the growth rate and frequency
of the growing mode can be obtained from (G28). Care is required
when selecting the correct solution of the cube root. We find

1 { ( €0k q; Wao )§
og = T
* 3(1 +€) V21 + &)
13
+ (54¢€0lkeg-waol (1 + €)°)* 7}

1

1 €0 3
~ /3| =k.q. G30
f(4 qéwd01+60) (G30)
where we neglected the first term o 7 in the bracket. Similarly,
1
€0 kiq:wao €0 3
~ kg , G31)
% q“wd°1+eo+< 4 1+eo)
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where we used
Tq: W40
1 —+ €0

which follows from (24) and (21) withn =0 and 7 < 1.

It is worth noting that if we neglect the azimuthal drift Av in the
dispersion relation (G27) we directly arrive at (G30). On the other
hand, if we neglect only the dust-settling term o< wy in (G27), we
find the growing mode

ke A
o = —ikxwdo + (1 - i) \/ﬂ, (G33)
I+e¢

which corresponds exactly to equation (C8) in Lin & Hsu (2022).
These authors found that an external torque acting on the gas alone
results in an azimuthal drift between dust and gas, which in turn
serves as an energy source for another dust-gas drag instability.
Indeed, the equilibrium relative azimuthal and radial velocities
between dust and gas in the current situation are given by (G32)
and

Avy ~

(G32)

2 2
Autg ~ T szd;)’
(I + €o)

which directly follows from (20) and (23). From these we infer that
in the absence of a radial pressure gradient (n = 0, for example in
the vicinity of a pressure bump) and the presence of vertical shear,
gas and dust experience a relative azimuthal drift that is larger by
a factor ~1/7 than the relative radial drift. Under these conditions
one may expect the manifestation of an azimuthal drift-induced SI, as
reported by Lin & Hsu (2022). The difference is that here Avg o< g, 20
is due to vertical shear in combination with dust settling, rather than
an external torque acting on the gas. That being said, in absence of
dust-settling (G33) would vanish as well. However, in the present
situation (away from the disc mid-plane) we find that the settling
of dust results in a much more vigorous instability (the DSSI) than
azimuthal drift would do.

(G34)
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