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Abstract

We report the finding of a new, local diffusion instability in a protoplanetary disk which can operate in a dust fluid,
subject to mass diffusion, shear viscosity, and dust–gas drag, provided the diffusivity, viscosity, or both, decrease
sufficiently rapidly with increasing dust surface mass density. We devise a vertically averaged, axisymmetric
hydrodynamic model to describe a dense, midplane dust layer in a protoplanetary disk. The gas is modeled as a
passive component, imposing an effective, diffusion-dependent pressure, mass diffusivity, and viscosity onto the
otherwise collisionless dust fluid, via turbulence excited by the gas alone, or dust and gas in combination. In
particular, we argue that such conditions are met when the dust–gas mixture generates small-scale turbulence
through the streaming instability, as supported by recent measurements of dust mass diffusion slopes in simula-
tions. We hypothesize that the newly discovered instability may be the origin of filamentary features, almost
ubiquitously found in simulations of the streaming instability. In addition, our model allows for growing oscillatory
modes, which operate in a similar fashion as the axisymmetric viscous overstability in dense planetary rings.
However, it remains speculative if the required conditions for such modes can be met in protoplanetary disks.

Unified Astronomy Thesaurus concepts: Protoplanetary disks (1300); Planet formation (1241); Circumstellar dust
(236); Hydrodynamics (1963); Astrophysical dust processes (99); Astrophysical fluid dynamics (101)

1. Introduction

Protoplanetary disks are the birthplaces of planets. One key
stage within the core-accretion scenario for planet formation
involves the conversion of small dust particles into kilometer-
sized planetesimals. The formation of planetesimals is asso-
ciated with a multitude of challenges. Specifically, coagula-
tional growth is thought to be inhibited at around meter sizes by
both radial drift and the fragmentation of small solids (Birnstiel
et al. 2012; Blum 2018).

For the last two decades, the attention has therefore been
directed toward gravitational contraction of sufficiently mas-
sive disk regions, particle filaments, or local overdensities.
Since the required dust-to-gas ratios are supersolar, one must
invoke additional processes that can effectively concentrate
dust particles. This includes secular gravitational instabilities
(Ward 2000; Youdin 2011; Takahashi & Inutsuka 2014;
Tominaga et al. 2019, 2020, 2023), particle traps such as
pressure maxima (Onishi & Sekiya 2017; Shibaike & Alibert
2020; Xu & Bai 2022), turbulent concentration (Chambers
2010; Hartlep & Cuzzi 2020), and dust–gas drag instabilities
(Johansen et al. 2015; Schäfer et al. 2017; Gerbig et al. 2020;
Gerbig & Li 2023), the most prominent of which is the so-
called streaming instability (Youdin & Goodman 2005; Jacquet
et al. 2011; Squire & Hopkins 2018).

In its linear phase, the streaming instability utilizes the
relative equilibrium velocity between dust and gas, in the
classical picture induced by the background gas pressure gra-
dient, to drive exponentially growing modes (Youdin &
Goodman 2005). The streaming instability saturates, after a few
dynamic timescales, into a quasi–steady state characterized by

turbulent particle density and velocity fluctuations (Johansen &
Youdin 2007). Eventually, this system self-organizes into azi-
muthally elongated filaments which can drift inward and merge
(see, e.g., Yang & Johansen 2014; Li et al. 2018; Li & Youdin
2021). The above three-step evolution has been readily
observed in 3D shearing box simulations of both vertically
stratified and unstratified protoplanetary disks where drag and
dust feedback is included.
The formation of planetesimals within the streaming

instability framework requires the additional component of dust
self-gravity, which, albeit not a priori obvious, is thought to
occur during the streaming instability’s nonlinear phase, either
before or after the emergence of the overdense filaments. The
nonlinear phase has been investigated numerically on numer-
ous occasions. Specifically, Schreiber & Klahr (2018) found in
2D simulations that dust diffusivities tend to decrease with
dust-to-gas ratio. This behavior was also seen in 3D, stratified
simulations by Gerbig & Li (2023), and is typically attributed
to the particles carrying too much collective inertia to be
effectively diffused away by residual gas turbulence, and
conversely, the back-reaction of the particles’ inertia onto the
gas may lead to a decrease in diffusion with increasing dust-to-
gas ratio. An alternative picture views particle diffusion similar
to gas pressure (a model we aim to discuss thoroughly in this
paper): a region of high diffusion expels particles toward
regions of low diffusion.
Either way, the implication of particle diffusion decreasing

with increasing dust density has hitherto not been investigated
analytically in the context of the stability of dusty proto-
planetary disks. The previous models by Chen & Lin (2020)
and Umurhan et al. (2020) had diffusion depend on the stop-
ping time and gas viscosity only, both of which are taken to be
constant. In this paper, we perform an instability analysis of a
sheet of particles subject to dust–gas drag forces and mass and
momentum diffusion, where the diffusion coefficients are
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allowed to vary with particle density. The existence of such a
dependence has been established in hydrodynamic simulations
by Schreiber & Klahr (2018) and Gerbig & Li (2023). Our
treatment thus bears some similarity to hydrodynamic studies
of the viscous instability (Lin & Bodenheimer 1981; Ward
1981; Salo & Schmidt 2010) and viscous overstability (Schmit
& Tscharnuter 1995, 1999; Schmidt et al. 2001; Latter &
Ogilvie 2009, 2010; Lehmann et al. 2017, 2019) in planetary
rings.

This paper is structured as follows. We outline our hydro-
dynamical model, specifically focusing on the diffusion terms
and their physical relevance, as well as perform a linear per-
turbation analysis, in Section 2. Next, we discuss the arising
nonoscillatory and overstable modes in Sections 3 and 4,
respectively. We discuss and contextualize our results in
Section 5. Lastly, Section 6 concludes the paper with a sum-
mary of our findings.

2. Hydrodynamic Model

2.1. Diffusion and Viscosity In Particle-laden Protoplanetary
Disks

Dust diffusion has long been identified to be of immense
importance for dust dynamics and consequently planetesimal
formation (see, e.g., Cuzzi et al. 1993). We deem it worth
explicitly defining for this work the relevant property terms and
putting them into the context of previous studies related
to particle diffusion. For a recent comprehensive discussion
on turbulent diffusion in protoplanetary disks we refer to
Binkert (2023).

Generally speaking, diffusion acts to minimize free energy.
In this work, we describe dust as a fluid subject to the diffusion
of mass, driven by a gradient in dust concentration and
momentum, driven by pressure gradients and shear stresses.

Under typical conditions, dust particles in protoplanetary
disks are not collisional, and therefore do not experience col-
lisional pressure forces. Instead, their dynamics are influenced
by their coupling to the gas, namely via their stopping time ts,
which appears in the drag term of the momentum equation, i.e.,
Fd∝ (v− u)/ts, where v and u are particle and gas velocity,
respectively. If the gas turbulence were fully characterized by
the gas velocities u, no additional diffusion terms would be
needed in modeling dust diffusion in protoplanetary disks.
Indeed, numerical simulations typically do not employ explicit
diffusivity or viscosity, and instead compute diffusive effects
indirectly via dust–gas interactions reflected in u (e.g., Yang
et al. 2018; Riols et al. 2020). As such a treatment is often not
practical for analytical progress, we employ a diffusion subgrid
model and describe diffusion and viscosity due to the particles’
coupling to the gas by using explicit terms in the hydro-
dynamical equations.

2.2. Governing Equations

Specifically, in this work, we will consider an isothermal,
infinitesimally thin, axisymmetric particle disk in the absence
of self-gravity, embedded in a gas that enters the system
through diffusion, viscosity, and drag. In polar coordinates
(r, f), the system is governed by the set of vertically averaged
fluid equations
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Equations (1) to (3) describe the dynamical evolution of the
surface mass density Σ, the radial velocity vr, and azimuthal
velocity vf, respectively, whereW = GM r3

* is the Keplerian
angular frequency, with stellar mass M* and gravitational con-
stant G. The continuity equation, Equation (1), takes the form of
an advection–diffusion equation, with mass diffusivity for dust
D. The momentum equations incorporate advection both by vr
and by the diffusion flux. This leads to the modified gradient
advection terms on the left-hand sides of the momentum
equations, as well as the modified curvature-related advection
term on the right-hand side of Equation (3). In addition, the fifth
term on the right-hand side of Equation (2) incorporates vr
advection of the momentum carried in the diffusion flux itself.
We refer to Tominaga et al. (2019) for a discussion on these
additional advection terms associated with the diffusion flux and
their implications when the full dust–gas mixture is considered,
but note that they allow the total gas and dust angular
momentum to be conserved.
We provide a more rigorous justification for our set of

hydrodynamical equations in Appendix A, using mean field
theory based on Reynolds averaging and the application of a set
of plausible closure relations. Given this context, the fields Σ
and v should be interpreted as mean fields separated in scale
from the underlying small fluctuations that characterize
turbulence.
Equation (2) includes the vertically averaged, effective dust

pressure = SP cd d
2, with velocity dispersion cd

2 of the dust fluid.
Since the dust is assumed to be collisionless, this effective
velocity dispersion is assumed to be generated solely by the
particles’ coupling to the turbulence with µc Dd

2 . Specifically,
we follow Klahr & Schreiber (2021) and Gerbig & Li (2023)
and write
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which follows from a balance between diffusion and sedi-
mentation. The latter approximation requires D t cs s

2 , which
is the case in numerical simulations (e.g., Schreiber & Klahr
2018; Gerbig & Li 2023). We discuss this pressure model in
Appendix B.
Finally, we include explicit momentum diffusion terms,

modeled by Navier–Stokes stress terms Fr and Ff. They can be
calculated via

=
S
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1
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with viscous stress tensor T, the components of which are
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where ν is the effective vertically averaged, kinematic, shear
viscosity of the particle fluid. The inclusion of these shear
stress terms differentiates Equations (2) and (3) from the dust
momentum equations used by Tominaga et al. (2019). Our
model also distinguishes itself from other works concerning
dusty protoplanetary disks on the scales of planetesimal for-
mation as we consider diffusivity D and viscosity ν, and con-
sequently via Equation (4), the velocity dispersion cd and dust
pressure, to depend on surface mass density Σ. Specifically, we
assert power-law dependencies of the form
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where βdiff and βvisc are dimensionless exponents. We also
introduce the corresponding dimensional slopes
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At high dust-to-gas ratios, βD has been found to be negative
(Schreiber & Klahr 2018; Gerbig & Li 2023). We are not aware
of any numerical constraints on βν within the context of tur-
bulent diffusion in dusty protoplanetary disks.

2.3. Model Applicability

Equations (1)–(3) can be applied if the combined inertia of
the disk is dominated by the particle fluid, for dust-to-gas
volume mass density ratios ρp/ρg 1. In this case, the presence
of the gas can be reduced to perturbations that evoke drag,
mass diffusion, and momentum diffusion (aka viscosity). While
the analytic model itself is agnostic to the source of diffusion
and viscosity, in this paper, we specifically apply it to particle
layers in the midplane of the protoplanetary disk, subject to the
nonlinear streaming instability.

Given this context, our model is restricted to radial length
scales exceeding the characteristic scale of the underlying
turbulence, in this case, the characteristic scale of the streaming
instability, which for τs∼ 1, is lSI∼ ηr (e.g., Youdin &
Goodman 2005; Squire & Hopkins 2018; Gerbig et al. 2020),
where η∼ 0.01 characterizes the radial pressure gradient in the
disk, and thus scales with the equilibrium relative velocity
between the dust and gas. For smaller stopping times, this
restriction is relaxed, as the characteristic scale of the linear
streaming instability decreases (e.g., Lin & Youdin 2017,
Appendix D). Also note that in the vertical direction, this
restriction is formally always satisfied as our model is vertically
unstratified, implying a vanishing vertical wavenumber of all
modes. Whether or not such modes are supported by an actual
vertically stratified dust layer requires a stratified analysis and
is thus subject to future work.

We further point out that a fluid description for particles in
protoplanetary disks, as applied here, is strictly only valid if
ts<Ω−1, since for decoupled grains the dynamical evolution of
the stress tensor cannot, in general, be ignored (see, e.g.,
Garaud et al. 2004; Jacquet et al. 2011), and must be modeled
using a kinetic approach. In this work, we instead assume that
the “external” turbulence is able to establish a simple New-
tonian stress–strain relation for the particle fluid, characterized
by the shear viscosity ν and isotropic velocity dispersion cd, as
discussed in Section 2.2 and Appendix A. This is to some
extent similar to the effect of mutual particle collisions in
planetary rings, which indeed, if frequent enough, are known to
establish a Newtonian stress–strain relation of the particle flow
(e.g., Stewart et al. 1984; Shu & Stewart 1985). However,
streaming instability turbulence, which is the main application
of our model, is not expected to occur for large stopping times,
which withdraws the physical justification for this assumption
(at least given this context). In addition, mutual collisions,
which are ignored in our model, may in principle become
relevant if the velocity dispersion µ -c td s

1 2 becomes suffi-
ciently small.
Despite these limitations, we will also present and discuss

results assuming larger particles with ts>Ω−1. In doing so, we
retain a concrete connection to the viscous instability and
overstability in planetary rings. Also, if large grains in proto-
planetary disks do experience momentum and mass diffusion
by some means (see the discussion in Section 5.5), our model
may still provide useful insights, despite lacking the stress
tensor evolution contained in a kinetic approach.

2.4. Linearized Equations and Dispersion Relation

We adopt a local, corotating Cartesian reference frame at
distance R from the star such that (x, y)= (r− R, R(f−Ωt))
and vx= vr, vy= vf− RΩ. We then perturb the system around
a background state such that S = S + S¢ = ¢ =v v v, ,x x y0

- W + ¢q x vy with S = const.0 , and linearize in perturbed
quantities. Following Appendix B in Klahr & Schreiber (2021),
we neglect the perturbed gas velocity ¢u such that the linearized
drag terms are µ- ¢v ts, which is justified if the mean field
quantities derived in Appendix A are time averaged over one
turbulent correlation time. This assumption conveniently
decouples the dust and gas equations and allows us to isolate
the effects of dust density–dependent turbulence alone.
For Keplerian shear where q= 3/2, Equations (1)–(3) thus

become
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This set of linearized equations is novel in that it includes a
Navier–Stokes viscosity for the particle fluid; relates the

3
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particle pressure to the diffusion and stopping time via
Equation (4), which produces the second term on the r.h.s. of
the radial momentum equation; and takes into account the
dependence of diffusion and viscosity on the particle surface
mass density, as motivated by the simulations of Schreiber &
Klahr (2018) and Gerbig & Li (2023). As a consequence, the
radial and azimuthal momentum equations respectively contain
the slope of the diffusion and viscosity with respect to the
particle surface mass density. Depending on the slope, these
terms can act by both stabilizing or destabilizing on perturba-
tions to the equilibrium state defined above, as we discuss
below. The mass diffusion term in the continuity equation, the
terms ∝∂/∂x2 (assuming ν> 0), and the term describing
advection of background shear by the diffusion flux (second
term on right-hand side of Equation (3)) are always stabilizing.
Note, that this diffusion flux term is the only term from the four
angular momentum conserving terms in Equations (2) and (3)
added by Tominaga et al. (2019) that survives linearization.
Notably, it behaves like the fourth term on the right-hand side
of Equation (13) containing the viscosity gradient. For the rest
of the paper, “diffusion flux” references this term specifically
unless stated otherwise. Lastly, the drag terms have a stabi-
lizing effect. In our analysis, we include both radial and azi-
muthal drag terms, which is in contrast to Klahr & Schreiber
(2021) who drop the azimuthal drag term.

We proceed by introducing axisymmetric modes of the form

¢ = - +f f e , 14ikx nt( ˆ ) ( )R

with complex frequency n and (radial) wavenumber k. We take
k> 0 without loss of generality. Modes grow and decay for

>n 0( )R and <n 0( )R , respectively, and n( )I corresponds to
the oscillation frequency, the sign of which sets the wave travel
direction. We get
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This system is solved by a cubic dispersion relation of the
form
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2.5. Dimensionless Quantities

It is convenient to write the dispersion relation in terms of
commonly used dimensionless quantities. The orbital fre-
quency introduces a time unit, such that we write the dimen-
sionless stopping time as

t º Wt , 22s s ( )

which, in general, is distinct from the so-called Stokes number
defined as the ratio of the stopping time and turbulent corre-
lation time (also known as the eddy time or integral time; Cuzzi
et al. 1993; Youdin & Lithwick 2007). Particles with τs= 1 are
well coupled to the gas while τs? 1 applies to loosely cou-
pled dust.
Our reference length unit is the gas pressure scale height,

which is the ratio of the (gas) sound speed cs and orbital fre-
quency, H= cs/Ω. We write the dimensionless wavenumber as
K≡ kH. Dimensionless versions of the ground state diffusivity
in Equation (7) and viscosity in Equation (8) are introduced as

d º
D

c H
, 23

s
( )

a
n

º
c H

, 24
s

( )

where we use the same nomenclature as the well-known Sha-
kura–Sunyaev α-parameter (Shakura & Sunyaev 1973), albeit
in our work, α describes the effective viscosity of the dust fluid,
and not the viscosity of the gas that is often adopted to model
angular momentum transport in protoplanetary disks. The
corresponding power-law slopes of the diffusivity and viscosity
were defined in Equations (7) and (8), i.e., b d= ¶ ¶ Sln lndiff

and b a= ¶ ¶ Sln lnvisc , respectively. Typical values for the
diffusivity and its slope are 10−5 δ 10−4 and −3 βdiff
−1, respectively, at high dust-to-gas ratios (Schreiber & Klahr
2018; Gerbig & Li 2023). Appropriate constraints on the par-
ticle viscosity α are less clear. In resistive simulations of the
magneto-rotational instability (Balbus & Hawley 1991), Yang
et al. (2018) measured a shear viscosity of α∼ 10−4 in the gas.
However, that value includes (albeit presumably small) con-
tributions from Maxwell stresses, and constitutes an average
value throughout the particle layer. We are not aware of any
other applicable constraints on α in the particle layer, or any
measurements of βvisc.
We define the hydrodynamic Schmidt number as the ratio of

the viscosity and mass diffusion coefficient for our particle
fluid, i.e.,

a
d

ºSc , 25( )

which is analogous to the definition used for pure gas in pro-
toplanetary disks by Johansen & Klahr (2005) and Carballido
et al. (2006). As pointed out in Youdin & Lithwick (2007), in
the context of particles in protoplanetary disks, the Schmidt
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number suffers from being oversubscribed, as it is also used to
describe the ratio of the gas viscosity to particle diffusivity
(Cuzzi et al. 1993; Schreiber & Klahr 2018; Binkert 2023).
Here, we are primarily interested in the dust component, hence
we assign Sc to characterize the relative importance of particle
viscosity and particle diffusivity, both of which stem from the
particles’ coupling to gas turbulence.

Lastly, we notice that for δ> 0, the dispersion relation
includes a degeneracy in wavenumber and diffusivity, such that
we can define

x dº =
W

K
Dk

. 262
2

( )

Note, that since the herein utilized description for dust pressure
is only appropriate for τs? δ, we equivalently require ξ= τsK

2.
As noted in Section 2.3, our model is only appropriate for scales
larger than the scale of the underlying turbulence. We thus
require ξ 4π2δ/((H/r)2η2). For typical values of H/r= 0.1,
η∼ 1%, and for fiducial diffusivities of δ∼ 10−5

–10−4, this
corresponds to a maximum ξ of order unity. This is why, for the
remainder of this study, we will mostly be concerned with the
long-wavelength limit where ξ< 1.

The dimensionless complex frequency is denoted as

s g wº
W
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n
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where g s= ( )R is the growth rate and w s= ( )I is the
oscillation frequency. The dimensionless version of the cubic
dispersion relation in Equation (18) is given by
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where A0, A1, and A2 are real coefficients. This implies that
A0< 0 is a sufficient condition for a nonoscillatory instability,
as then there is at least one real positive root of Equation (28).
The full, complex dispersion relation can also be cast into two
equations for the growth rate and oscillation frequency, which
need to hold independently

w wg wg w- - - =A A3 2 0, 323 2
2 1 ( )

g w g w g g- - + + + =A A A A3 0. 333 2 2
2

2
2 1 0 ( )

3. Diffusive Instability

This section investigates the diffusive instability associated
with the real roots of the dispersion relation in Equation (28).

Consider, however, first the case with zero diffusivity and
viscosity, i.e., Sc= 0, ξ= 0. In this limit, the above dispersion
relation reduces to

s s
t
s

t
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which is solved by damped, epicyclic waves with oscillation
frequency Ω and negative growth rate - -ts

1. The purely real
root is the static null solution with σ= γ= ω= 0. It is this
mode that will get destabilized by diffusion and/or viscosity, as
we discuss in the following. As this section is only concerned
with the nonoscillatory, purely real solution, we set ω= 0, and
replace σ= γ. We will redirect our attention to oscillatory
modes in Section 4.

3.1. Inviscid Case

We first investigate the purely diffusive case, where Sc= 0.
In this limit the dispersion relation can be written as
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which leads to unconditional instability if

b t< - -2 2 . 36diff s
2 ( )

For realistic power-law slopes of βdiff−3 (Schreiber & Klahr
2018; Gerbig & Li 2023), inviscid (Sc= 0) diffusive instability
thus requires τs 1.
For small growth rates γ= 1, we find from Equation (35),

g
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which for small stopping times equals

g x b t- +2 1 . 38diff s( ) ( ) ( ) 

Figure 1 shows the growth rate for the inviscid diffusive
instability for choices of the slope βdiff and stopping time τs for
modes with ξ= 0.1, which for a fiducial δ= 10−5 corresponds
to K= 100. Note that instability requires βdiff<−2, which is
consistent with the more general condition in Equation (36) in
the limit τs= 1.
Figure 2 shows the growth rates of the inviscid diffusive

instability for βdiff=−3 for various stopping times. The system
is either stable (for τs 1) or unstable (for τs 1) for all ξ. In
fact, we note that inviscid diffusive instability is not damped at
small scales, but displays the fastest growth rates at scales
ξ> 1, which is where our model breaks down, as indicated by
the hatched region in Figure 2.
The physical origin of the inviscid diffusive instability lies in

the dust pressure term in Equation (2). For βdiff< 0, this
pressure term acts by destabilizing and accelerating particles
toward annuli of high density and low diffusivity. If βdiff
is sufficiently steep for Equation (36) to hold, i.e.,
b t< - -2 2diff s

2, this pressure forcing can overcome the
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stabilizing mass diffusion term in Equation (1) and the drag
terms in the momentum equations. This increases the density,
while in the process further decreasing diffusion, resulting in
positive feedback and instability. In the large stopping time
limit, the drag terms vanishes, as too does the destabilizing
pressure term. The only remaining terms are the mass diffusion
term in the continuity equation, and the diffusion flux term in
Equation (13), both of which act to repel particles away from
density maxima. Hence, the onset of this instability requires
that stopping times are small.

3.2. Sc= 1 case

Next, we consider the case where D= ν, equivalently
Sc= 1, such that the equilibrium value of momentum diffusion

equals that of the mass diffusion, and also the power-law slopes
of the diffusion and viscosity are identical, i.e., βvisc= βdiff.
Under these assumptions, the dispersion relation is
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In the long-wavelength limit of ξ< 1, we recover our finding
for the inviscid case where a power-law gradient βdiff<−2
suffices for instability if the stopping times are sufficiently
small: τs= 1. This is because for small stopping times and at
large radial length scales, the destabilizing pressure term
dominates over the viscosity terms.
For large stopping times of τs? 1, the explicit drag terms

and the pressure term become neglible. In this case, the long-
wavelength limit ξ< 1 yields

b
x t x

t x
-

+ +
+

» - 4 15 10

9 3

5

3
. 41diff

2
s

s

( )
( )

The diffusive instability behaves now analogously to the
classical viscous instability (Ward 1981; Lin & Bodenheimer
1981), in that the instability is driven by the density slope of the
shear viscosity that appears in the azimuthal momentum
equation (Equation (13)). If the slope is sufficiently steep, there
is a net flux toward density maxima that amplifies the linear
perturbation. The criterion for the classical viscous instability
is given by βvisc<−1. Our modification in Equation (41)
is due to the inclusion of the mass diffusion term in the con-
tinuity equation (Equation (11)) and the diffusion flux in
Equation (13). Both of these terms are always stabilizing, and
hence the required viscosity slope for diffusive instability dri-
ven by viscosity that operates in the τs? 1 limit is steeper than
in the classical case.
It is easy to see in Equation (31) that if τs= 1, the slope of

the mass diffusion will dominate, whereas for τs? 1, the slope
of the momentum diffusion will dominate, thus leading to
diffusive instability driven by the pressure term and viscosity
terms, respectively. For marginally coupled particles τs∼ 1, the
instability can utilize both slopes. Because of this, on large
scales ξ 1, if βdiff is sufficiently negative, the system is
unstable regardless of the stopping time.
For small growth rates γ= 1, and for small ξ, the real root of

Equation (39) behaves as

g
t t b x

t b x t
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+ + +
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2
diff
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Figure 1. Growth rates for the inviscid (Sc = 0) diffusive instability driven by
the diffusion-dependent pressure for ξ = 0.1. The black dashed line corre-
sponds to Equation (36), below which the instability can operate, and above
which, perturbations are exponentially damped.

Figure 2. Growth rates for the inviscid (Sc = 0) diffusive instability driven by
the diffusion-dependent pressure for βdiff = −3 and various stopping times.
The hatched region corresponds to ξ > 1, for which our model seizes to be
appropriate. The lines for τs = 10 and τs = 100 overlap.
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which in the limits of well-coupled and decoupled particles
equals, respectively

g
x b t
x b t

- +
- +

2 1,
5 3 1.

43diff s

diff s

⎧
⎨⎩

( )

( )
( )




We thus recover Equation (38), in the limit of small stopping
times.

Figure 3 shows the real root of the full cubic in Equation (39)
for ξ= 0.1. The black curve corresponds to Equation (40). For
a given βdiff, the growth rates are greater for large stopping
times. Figure 4 depicts the growth rate of the viscous–diffusive
instability for βdiff= βvisc=−3 for various stopping times.
Unlike in the invisicd case, where if Equation (36) is satisfied,
all modes ξ are unstable (see Figure 2), the viscous–diffusive
instability is damped at small scales (ξ 1) by viscosity. This
regularizes the system, by prohibiting growth on arbitrarily
small scales. While our model itself is not applicable to large ξ,
one does not expect growth rates to increase without bound at
ever-decreasing scales, which is an advantage of including
viscosity in the model.

3.3. General Case

Given that numerical constraints on the effective viscosity in
the high-density particle midplane of protoplanetary disks are
sparse, we finally investigate the most general case our model
allows, where we remain agnostic to the value of Sc and retain
two independent power-law slopes in δ and α. As before, pure
instability is achieved for A0< 0, which for small ξ results in
the condition

t
b b+ + + < -

1
2 3Sc 1 2. 44

s
2 diff visc( ) ( ) ( )

In the general case, the growth rate of the diffusive instability,
as well as the existence thereof in the first place, thus depends
on five parameters: the stopping time τs, Schmidt number Sc,

diffusion slope βdiff, viscosity slope βvisc, and dimensionless
wavenumber ξ. The Schmidt number Sc acts as an amplifica-
tion to the viscosity slope in the context of the diffusive
instability.
Like in the previous two cases, well-coupled particles with

τs= 1 result in instability if b t< - - » -2 2 2diff s
2 , on

account of the diffusive instability. On the other hand, loosely
coupled particles with τs? 1 are unstable if

b < - --2

3
Sc 1. 45visc

1 ( )

If Sc? 1, we exactly recover the classical criterion for viscous
instability in planetary rings (Ward 1981; Lin & Bodenhei-
mer 1981).
For pure instability with small growth rates, γ= 1,

Equation (28) yields γ=− A0/A1, which for ξ< 1 results in
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In the well-coupled limit τs= 1, this equals the inviscid case in
Equation (38). In the loosely coupled limit with τs? 1, we get

g x b t= - + +2 3Sc 1 1 . 47visc s[ ( )] ( ) ( )

4. Overstability

We now direct our attention to overstable modes with non-
zero ω. Figure 5 shows growth rates of such oscillatory modes
as obtained from the full dispersion relation, and demonstrates
that large stopping times are required to achieve growing
modes. We caution that in this regime, the fluid approximation
for the dust grains that underlies our model starts to break down
(also see Sections 2.3 and 5.5 as well as Appendix A). We
proceed with the analysis for completeness.
For oscillating solutions with ω≠ 0, Equation (32) implies

w g g= + +A A3 2 , 482 2
2 1 ( )

Figure 3. Like Figure 1. Growth rates for the viscous–diffusive instability for
ξ = 0.1, assuming equal mass and momentum diffusion with Sc = 1 and
βdiff = βvisc. The black curve corresponds to Equation (40), below which the
instability can operate, and above which perturbations are exponentially
damped. Note that while parts of the depicted parameter space allow for vis-
cous overstability, this figure only shows the purely real solution. See
Section 4.

Figure 4. Like Figure 2, but for the viscous–diffusive instability assuming
equal mass and momentum diffusion with Sc = 1 and βdiff = βvisc = −3, for
various stopping times. The viscosity terms damp the instability on small
scales, albeit only for ξ > 1, where we expect the model to break down. The
lines for τs = 10 and τs = 100 overlap.
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which is positive definite for ξ= 1 as seen in Figure 5. When
inserted into Equation (33), this results in a cubic for the
growth rate of the wave, i.e.,

g g g+ + + + - =A A A A A A8 8 2 0. 493
2

2
1 2

2
1 2 0( ) ( )

For small growth rates γ= 1, A1, and A2, the root is
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Assuming large stopping times τs? 1, this becomes
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which is plotted in Figure 5 in comparison to the root of the full
cubic. For overstability, i.e., growing oscillations, the growth
rate must be positive, i.e., γ> 0, or equivalently
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-

 Sc

3

2

9
, 53visc
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which equals −5/9 for Sc= 1. Since overstability is char-
acterized by a restoring force which lacks in case of pure
instability, this requirement on βvisc is opposite in direction
compared to the criteria for instability discussed in the previous
sections (also compare to the classical viscous overstability,
e.g., in Latter & Ogilvie 2006a).

We also note that the 1/Sc term in Equation (53) originates
from the advection of angular momentum carried by back-
ground shear due to the diffusive flux, i.e., the second term on
the right-hand side of Equation (13). For Sc? 1, i.e., negli-
gible diffusion compared to viscosity, this term vanishes and
we recover the classical criterion for the viscous overstability in
planetary rings (Schmit & Tscharnuter 1995). Interestingly, it is
this same term that allows for overstability even in the inviscid
case. That is, by setting Sc= 0, the growth rate resulting from
Equation (51) becomes

g
xt b t xt

t xt b t
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+ + + -
+ + +

2 5 2

10 14 2 2
, 54s diff s

2
s
3

s s
2

diff s
3
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which tends to γ= ξ/2 for large stopping times τs? 1 (com-
pare to Equation (52)). Thus, in this limit, the diffusion flux
given by the second term on the right-hand side of
Equation (13) alone is able to grow epicyclic oscillations.
In Figure 6, we depict growth rates of the diffusive over-

stability obtained from Equation (51) as a function of the
stopping time. The smallest scales have the fastest growth rates
and have the least stringent restrictions on the stopping time.
For the depicted set of parameters, τs 10 leads to over-
stability on the smallest scales. While this requirement can be
further relaxed for larger Sc or more positive βvisc, for τs 1,
all oscillating modes are damped.
For this reason, the overstable modes discussed in this

section have little physical relevance in the context of particles
that generate streaming instability turbulence, where the largest
available dust grains are limited at typically τs 1 (e.g.,
Birnstiel et al. 2016). We elaborate on this, as well as explore
alternative situations where the diffusive overstability may find
applicability in Section 5.5.

5. Discussion

In the previous sections, we showed that a dust fluid in
protoplanetary disks, which is governed by Equations (1)–(3),
can be unstable (Section 3) and overstable (Section 4) when an
otherwise constant background state is linearly perturbed,

Figure 5. Growth rates for diffusive overstability driven by the viscosity slope (Sc = 1, left panel) and driven by the diffusion slope (Sc = 0, right panel) for various
stopping times obtained from the full dispersion relation in Equation (28). We set βvisc = βdiff = 0 in order to allow for both types of overstability. The dashed lines
correspond to Equation (52), which only do not differ substantially between the two panels due to the choice of βvisc = 0. The lines end once the modes become
nonoscillatory (and thus damped), which for large stopping times occur as ξ approaches the hatched region where our model is not applicable.
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depending on the stopping time of particles and the steepness
of the diffusion and viscosity slopes with respect to the dust
surface mass density. Here, we discuss and contextualize our
findings.

5.1. Physical Picture

First, we reiterate the physical mechanisms that drive the
newly found instabilities. Figures 7 and 8 show the growth
rates of the full system including both overstability and
instability, for the inviscid (Sc= 0) and viscous (Sc= 1) case,
respectively. Guided by the depicted parameter space we can
broadly assign the unstable regions into four categories

1. Diffusive instability driven by the diffusion-dependent
pressure. For small stopping times, the utilized dust
pressure prescription (with velocity dispersion

µ µ Sbc Dd
2 diff) can lead to linear instability if the dif-

fusion slope βdiff is sufficiently negative (see
Equations 36 and 40), and drives particles toward density
maxima. The instability is only damped on small scales if
the viscosity is nonzero, and has the fastest growth rates
on the smallest unstable scales. This instability requires
τs 1, βdiff−2, and if Sc 1 also ξ 1, which for a
fiducial δ∼ 10−5 corresponds to wavelengths of
λ 0.01H. The associated growth rates are shown in the
top two panels of Figure 7 as well on the left side of the
top panel of Figure 8 for small stopping times.

2. Diffusive instability driven by the viscosity slope. For
nonzero viscosity, the viscosity term dominates over the
pressure term for sufficiently large stopping times, lead-
ing to a version of the viscous instability (Ward 1981; Lin
& Bodenheimer 1981), modified by mass diffusion and
the diffusion flux. This instability requires τs 1, Sc 1,
ξ 1, and βvisc−5/3, and is seen in the top two panels
of Figure 8 for large stopping times.

3. Diffusive overstability driven by the background diffusion
flux. The inclusion of the diffusion flux in Equation (13),

which radially distributes azimuthal momentum carried
by the background shear, provides an additional repellent
term that can amplify oscillatory modes if the stopping
times are large and viscosity is small. This overstability
requires τs 10 and Sc= 1, and is seen in all panels of
Figure 7 for large stopping times.

4. Diffusive overstability driven by the viscosity slope.
Analogously to the classical viscous overstability (Schmit
& Tscharnuter 1995), the repellent term that amplifies
oscillations is provided by the viscosity slope. This
overstability requires τs 10, Sc 1, ξ 1, and
βvisc−5/9. The associated growth rates are shown in
the bottom panel of Figure 8.

The linear theory describing the diffusive instabilities and
overstabilities presented in this work is largely similar to that of

Figure 6. Growth rates for diffusive overstability driven by the viscosity slope
(Sc = 1) vs. stopping time for various values of ξ, and setting βvisc = βdiff = 0
following Equation (51), which assumes ξ = 1. For the smallest scales our
model applies to, and, given the chosen set of parameters, stopping times of
τs  8 allow for overstability.

Figure 7. Growth rates for inviscid (Sc = 0) diffusive instability and over-
stability. The diffusion slope βdiff increases from top to bottom. The diffusive
instability driven by diffusion-dependent pressure is active for all modes ξ if
b t< - -2 2diff s

2 (see Equation (36)), which is the case in the upper two
panels for small stopping times. For large stopping times, the diffusive over-
stability driven by the background diffusion flux is active, to first order
regardless of the value of βdiff.
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the classical viscous instability (Ward 1981; Lin & Bodenheimer
1981) and axisymmetric viscous overstability (Schmit &
Tscharnuter 1995) in planetary rings, at least under the neglect
of self-gravity and thermal effects, and given the appropriate
limits in our model, i.e., τs? 1 and Sc? 1. It should be noted
though that the physical origin of viscosity and pressure in
planetary rings lies in mutual particle collisions, in contrast to
the situation depicted in this work, where it results from self-
generated turbulence that is external insofar as the model is
concerned. Also, a “thin-disk” version of the viscous over-
stability (i.e., on large radial length scales?Hg), generated
by a constant kinematic shear viscosity, can in principle also

exist in gaseous protoplanetary disks (Latter & Ogilvie
2006a).
In addition, we mention the dust-driven viscous ring

instability pioneered by Dullemond & Penzlin (2018) as well as
the related instability in Johansen et al. (2011), both of which,
although operating on larger scales, are similar in spirit to this
paper’s diffusive instabilities. They consider a disk where the
gas viscosity is set by turbulence generated from a magneto-
rotational instability (Balbus & Hawley 1991), which weakens
with increasing dust density through the ionization fraction. It
is the viscous gas disk itself that can now be unstable to linear
perturbations: an increase in gas density attracts dust grains as
they tend to drift toward gas pressure maxima (e.g., Sano et al.
2000); turbulence then weakens and the gas viscosity drops,
thereby increasing the gas density further, which attracts more
dust, and so on. In our model, we only consider the dust fluid
but the decrease in its viscosity, diffusivity, and dust pressure
as the dust surface density increases is likewise physically
motivated by dust feedback lowering the local diffusive prop-
erties of the turbulence generated on small scales.
Indeed, while we motivate our model with streaming

instability turbulence and associated measurements of the dif-
fusion slopes (Schreiber & Klahr 2018; Gerbig & Li 2023), it
may as well be applicable to other sources of turbulence. For
example, the azimuthal streaming instability discovered by Hsu
& Lin (2022) has likewise been observed to evolve into fila-
ments once linear modes are saturated. Moreover, if one con-
siders pure gas instabilities as sources of turbulence, the
vertical shear instability (Urpin & Brandenburg 1998; Nelson
et al. 2013; Lin & Youdin 2015; Barker & Latter 2015; Pfeil &
Klahr 2021) or the convective overstability (Klahr & Hubbard
2014; Lyra 2014; Latter 2016) may generate environments
suitable for secondary diffusive instabilities. The dependence
of the diffusivity and viscosity on the disk parameters would
need to be clarified with detailed simulations, but to zeroth
order, one expects a drop in turbulence with increasing dust
loading, similar to that for the magneto-rotational instability
discussed above, because dust feedback tends to stabilize the
vertical shear instability (Lin 2019; Lehmann & Lin 2022) and
linear convective overstability (Lehmann & Lin 2023).

5.2. Filament Formation through Diffusive Instability

Based on the analytic findings in Sections 3 and 4, we
hypothesize that the diffusive instability, driven by a suffi-
ciently negative density dependence of the dust pressure,
physically motivated by dust loading reducing diffusivity, may
act to amplify density perturbations. These perturbations could
then saturate to become marginally stable filaments, as seen in
many past simulations (e.g., Johansen & Youdin 2007;
Johansen et al. 2009; Carrera et al. 2015; Klahr & Schreiber
2016; Yang et al. 2018; Li et al. 2018; Schreiber & Klahr 2018;
Sekiya & Onishi 2018; Gerbig et al. 2020; Flock & Mignone
2021; Li & Youdin 2021; Hsu & Lin 2022; Gerbig & Li 2023).
We visualize the growth of the linear perturbations into such

filament-like overdensities in a spacetime diagram of the per-
turbed density S¢ following Equation (14). Figure 9 shows a
perturbation subject to diffusive instability. The chosen set of
parameters produces overdensities with a radial spacing of
about 0.02H, which are consistent with the first emergent
filaments found in streaming instability simulations (e.g., Li &
Youdin 2021).

Figure 8. Like Figure 7 but for the viscous–diffusive instability and (modified)
viscous overstability with Sc = 1. The top panel shows a combination of dif-
fusive instability driven by diffusion-dependent pressure and viscous instability
driven by the negative viscosity slope for small and large stopping times
(compare to Figure 3). In the panel second from the top, Equation (40) remains
satisfied, while Equation (36) is not, so instability is driven by the viscosity
slope alone and thus restricted to large τs. In the third panel from the top,
neither instability is active. When Equation (53) is satisfied (for Sc = 1 when
βvisc exceeds −5/9), the (modified) viscous overstability driven by the visc-
osity slope can be active for large stopping times. Note that for Sc = 1, we do
not see the purely diffusive overstability as it is damped by viscosity.
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Indeed, the diffusive instability has the fastest growth rates
on the smallest scale not limited by viscosity xmax, which is
x ~ 1max . The corresponding fastest-growing mode is thus
expected to be around

l p
p

d
x

p d= = »
H K

2
2 2 . 55

fgm

max

( )

For δ∼ 10−5 (e.g., Schreiber & Klahr 2018; Klahr & Schreiber
2020; Gerbig & Li 2023) this would correspond to a consistent
value of λfgm∼ 0.02H (e.g., Li & Youdin 2021). Note that the
filament separation in simulations has been found to depend on
the external gas pressure slope, stopping time, and dust abun-
dance (e.g., Schreiber & Klahr 2018; Gerbig et al. 2020; Li &
Youdin 2021). If these properties influence streaming
instability turbulence (e.g., Johansen & Youdin 2007), they are
expected to map onto diffusivity and ultimately on the fastest-
growing mode in Equation (55). On the other hand, the com-
monly used fiducial value for the filament feeding zone of 0.2H
(Yang & Johansen 2014) cannot be directly compared to the
scales of interest, as it already involves postformation nonlinear
dynamics, such as mergers and breakups.

Figure 10 visualizes the streaming motion that arises from
the diffusive instability. Dust is moving toward density max-
ima, which act as particle traps, in the process amplifying the
perturbation.

For comparison, Figure 11 shows traveling waves driven by
the diffusive overstability. The shearing sheet is symmetric in
x, so waves traveling toward positive x correspond to the
complex conjugate of the depicted solution and are equally
valid. Note, that the radial bulk velocity is entirely caused by
the overstability. If one were to include the background pres-
sure gradient, the flow would pick up a, to first order, constant
background drift, which does not affect stability since we can
shift into the comoving frame.

5.3. Diffusive Instability in the Context of Past Numerical
Simulations

The aim of this study is to present a simple linear model for
the emergence of the first filaments out of streaming instability
turbulence, as seen in a number of simulations including
Schreiber & Klahr (2018), Gerbig et al. (2020), Li & Youdin
(2021), and Gerbig & Li (2023). Within our model, the
required linear growth rates and corresponding required

Figure 9. Filament formation shown in a spacetime diagram of a linear per-
turbation subject to diffusive instability driven by pressure. For this plot, we
chose Sc = 0, τs = 0.1, and βdiff = −3. We also chose a value of δ = 10−4 and
a fast growing mode of ξ = 0.1, which corresponds to a physical wavenumber
of k = 100/H. The eigenvector is scaled with S = S0.01 0

ˆ . Figure 10. Diffusive instability driven by the diffusion-dependent pressure
with the same parameters as in Figure 9. Shown is a map in the x−y space of
the particle surface density after a time of 3Ω−1, with superimposed rescaled
velocity vectors ¢ ¢v v,x y( ). The fluid motion is toward density maxima, thus
amplifying the perturbation and producing filaments. We show the y-coordinate
for better visualization, even though the model itself is axisymmetric.

Figure 11. Like Figure 9, but for an oscillatory mode. The linear perturbation is
subject to diffusive overstability powered by the background diffusion flux. We
chose, Sc = 0, τs = 1000, βdiff = 0, and S = S0.01 0

ˆ . We took δ = 10−7, at
which a mode of ξ = 0.1 corresponds to a physical wavenumber of k =
1000/H. Note that the shearing sheet is symmetric in x, so waves traveling
toward positive x are equally valid.
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stopping times that are expected to result in filament formation
depend on the values of the diffusion and viscosity slopes βdiff
and βvisc, respectively. Therefore, we aim to contextualize our
findings with existing numerical studies and measurements of
the aforementioned slopes. As such, our presented theory can
most readily be compared to the numerical results presented in
Schreiber & Klahr (2018), who performed 2D, nonaxisym-
metric, non–self-gravitating shearing sheet simulations of the
streaming instability. By conducting a number of simulations at
different dust-to-gas ratios and measuring the average particle
diffusivity in each simulation, they were able to obtain the
slope of diffusion with respect to the dust surface mass density,
resulting in values −2 βdiff−1, where the exact value
depended on the box size and particle stopping time used in
their simulations.

While some of the simulations of Schreiber & Klahr (2018)
revealed the emergence of filaments with particle concentra-
tions significantly enhanced relative to the ambient back-
ground, most did not. In the context of the linear diffusive
instability discovered in our work, which requires βdiff−2
(see Figure 3) for instability, the simulations in Schreiber &
Klahr (2018) are hence expected to be marginally stable. More
recently, Gerbig & Li (2023) measured the diffusion slope
within a single vertically stratified shearing box simulation of
the streaming instability. They also found βdiff∼−2. As this
value was obtained after the formation of filaments in their
simulations, this is also consistent with their simulations being
marginally unstable with respect to diffusive instability, pro-
vided the saturation of filament growth results in such a mar-
ginally stable state.

5.4. Connection to Planetesimal Formation

Within the streaming instability paradigm of planetesimal
formation, filaments are often thought to be a necessary pre-
cursor for planetesimal formation, as they provide the neces-
sary conditions for subsequent self-gravitational fragmentation.
It is therefore of interest to compare the parameter space for
active diffusive instability within our model to that determined
in numerical simulations of planetesimal formation, specifically
clumping thresholds in streaming instability simulations. For
this purpose, we can relate metallicity Z to the dust-to-gas ratio
ò= ρp/ρg and diffusivity via (e.g., Lin 2021)

d
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where Hd is the vertical scale height of the dust.
Assuming τs? δ, we have δ∼ τs(Z/ò)

2. Since our model,
and therefore also the diffusive instability mechanism, only
implicitly depends on δ via ξ, a change in diffusivity due to a
metallicity increase (decrease) can be compensated by a
decrease (increase) in wavenumber K toward larger (smaller)
radial length scales. For example, the typically fast growing
mode of ξ∼ 1 corresponds to wavenumbers of t~ K Z s( ).

We proceed by imposing a minimum scale of λcrit∼ 0.01H,
below which the model does not apply (see Section 2.2), and
use this to restrict the maximum allowed ξ, given some value of
Z. Specifically, we have
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We then assume that the fastest-growing mode admitted by our
model is given by x t x x=Z, min ,s fgm max( ) ( ), where ξfgm is the
mathematically fastest-growing mode, which is obtained
numerically from the full dispersion relation in Equation (28).
ξfgm is typically of order unity (see Figure 2), but may be larger,
either in the absence of viscosity or for very small stopping
times (see Figures 2 and 4, respectively); or smaller, if the
viscosity slope is only marginally more negative than the cri-
tically required slope (see the top panel in Figure 8).
Figures 12 and 13 show the growth rates associated with this

preferred mode assuming ò= 1 and λcrit= 0.01H. We also take
βdiff= βvisc=−2.2 in both figures. Figure 12 shows the
inviscid case with Sc= 0, where only the diffusive instability
driven by the diffusion-dependent pressure is possible given the
set of parameters, thus suppressing growth for larger stopping
times. Overplotted are the clumping thresholds obtained by
Yang et al. (2017) and Li & Youdin (2021; also see Carrera
et al. 2015 for another version), below which, streaming
instability clumping is unlikely to occur. If one takes filament
formation due to diffusive instability as a precursor to clump-
ing, then the model depicted in Figure 12 would be inconsistent
with the results from the aforementioned simulations, as
instability only occurs for stopping times τs 0.3, in contrast
to the results of the simulations.
On the other hand, Figure 13 shows growth rates associated

with the same set of parameters, except that now Sc= 1. Now,
in principle, particles with any value τs 1 can be unstable to
diffusive instability driven by the viscosity slope, which pro-
duces similar growth rates. Thus, in this model, the entire
parameter space, probed by the studies Yang et al. (2017) and
Li & Youdin (2021), is subject to diffusive instabilities, ren-
dering the model consistent with the hypothesis that planete-
simal formation is triggered by the emergence of filaments
induced by diffusive instability.

Figure 12. Growth rates of diffusive instabilty driven by the diffusion-
dependent pressure term, depending on the metallicity Z and stopping time τs,
compared to clumping thresholds in the streaming instability simulations by
Yang et al. (2017) and Li & Youdin (2021). We associate a given metallicity Z
with the fastest-growing allowed mode ξ of our model via the recipe discussed
in Section 5.4 assuming ò = 1 and λcrit = 0.01H. For the shown growth rates,
we also chose βdiff = βvisc = −2.2 and Sc = 0, a favorable set of parameters
for diffusive instabilities for small stopping times only.
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We note that the models displayed in Figures 12 and 13
contain a number of parameters (λcrit, ò, βdiff, βvisc, and Sc)
which we chose relatively freely and assumed to be indepen-
dent of τs in order to get a prototype idea if there may be a
connection to planetesimal formation. The resulting first esti-
mations insinuate that a model which includes viscosity in
addition to mass diffusion is more able to explain the threshold
for planetesimal formation as determined in simulations, as
only then, diffusive instability can also operate for stopping
times of τs 0.3, in agreement with planetesimnal formation in
simulations. More detailed calculations, in concert with addi-
tional numerical constraints on diffusion and viscosity slopes,
are required to assess further the diffusion instability’s role in
planetesimal formation.

5.5. Instability and Overstability at Large Stopping Times?

The local axisymmetric viscous overstability of a thin
astrophysical disk has extensively been studied in the context
of Saturn’s dense rings, employing hydrodynamic models
(Schmit & Tscharnuter 1995, 1999; Spahn et al. 2000; Schmidt
et al. 2001; Schmidt & Salo 2003; Latter & Ogilvie 2009,
2010; Lehmann et al. 2017, 2019), kinetic models (Latter &
Ogilvie 2006b, 2008), and N-body simulations (Salo et al.
2001; Rein & Latter 2013; Ballouz et al. 2017; Lehmann et al.
2017; Mondino-Llermanos & Salo 2023). Based on the results
from the hydrodynamic and N-body simulations, overstability
in Saturn’s rings typically saturates in the form of nonlinear
traveling wave trains that could in principle carry appreciable
amounts of angular momentum. Wave trains are often inter-
spersed by defect structures, which may act as sources or sinks
of the former. Indeed, viscous overstability is the most pro-
mising mechanism to explain the occurrence of periodic fine
structures on a ∼100 m scale in parts of Saturn’s A and B rings,
which have directly been observed (Thomson et al. 2007;
Colwell et al. 2007; Hedman et al. 2014). It is thus of interest to
explore the conditions under which we expect the diffusive
overstability to operate in overdense particle layers in proto-
planetary disks.

Since this requires τs 1, we preface further discussion by
reiterating that the hydrodynamical model is strictly not
applicable for large stopping times, and instead a kinetic model
should be used (see Section 2.3).
As outlined in Section 5.1, in addition to the diffusive

instability driven by the pressure term, there are three types of
instabilities that can arise for large stopping times. While
instability and overstability driven by the viscosity slope have
specific requirements on βvisc, diffusive overstability can
operate if Sc= 1 regardless of the value of the diffusion slope
βdiff (see Figure 7).
The questions are (a) to what extent the invisicd, hydro-

dynamic model can still appropriately describe the system for
τs 1, whether or not particles with sufficiently large stopping
times (b) can exist, and (c) is their turbulent behavior still well
characterized by the diffusive flux model that shapes the con-
tinuity equation, the pressure model, and the angular momen-
tum conserving terms in the momentum equations.
Indeed, in the classical picture of particle growth in proto-

planetary disks, stopping times are limited at around τs∼ 1
(e.g., Birnstiel et al. 2012, 2016), and as such, individual par-
ticles that qualify for diffusive overstability would already be
considered planetesimal-sized objects. Another possible path-
way of getting objects with large stopping times was suggested
by Johansen & Youdin (2007). In an effort to explain unex-
pected drift rates of particle clumps found in their streaming
instability simulations, they hypothesize that a clump may
collectively have an increased stopping time relative to the
individual grains, due to shielding each other from the gas
stream and providing an order-of-magnitude scaling

t
h

h
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W
D


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r

r

v
, 58s

eff clump
( )

with Rclump being the clump’s radius and Δv its velocity rela-
tive to the gas. While such clumps are far too few in number
density to be appropriately modeled by a fluid approach, we
adapt this hypothesized collective shielding effect to our
situation.
Specifically, applying Johansen & Youdin (2007)’s argu-

ment to the quasisteady, turbulent dust layer that we envision as
being in equilibrium, we set Rclump=Hd as the dust scale
height. Then, using Hd= ZH/ò from Equation (56), we find
t ~ PZs

eff , where Π≡ η/(H/r) is the reduced radial pressure
gradient parameter, again taking Δv∼ ηrΩ. The diffusive
overstability’s requirements of t  1s

eff translates to ZΠ, and
the same applies for the diffusive instability driven by the
viscosity slope. Coincidentally, Bai & Stone (2010) find that
clumping via the streaming instability becomes easier with
smaller Π. Similarly, at fixed τs (the stopping time for indivi-
dual grains), Sekiya & Onishi (2018) find filament formation in
their streaming instability simulations if p P Z2 1. We can
interpret these results within our model as filaments only form
if the effective stopping time, realized through Z/Π, exceeds
unity in order to trigger the diffusive overstability (or the dif-
fusive instability driven by the viscosity slope).
The streaming instability formally still operates for τs 1 as

the growth rates only decrease slowly with stopping time (Pan
2020). However, due to the lack of numerical constraints on the
diffusivity in this regime, it is unclear to what extent instabil-
ities and overstabilities would develop on the scales within our
model’s validity, even if the diffusion and viscosity slopes were
to remain unchanged. Since, in order to achieve instability on

Figure 13. Like Figure 12 but now for Sc = 1, which allows for instability
driven by the viscosity slope at large stopping times in addition to the
instability driven by the diffusion-dependent pressure term. The other para-
meter choices are identical to those in Figure 12.
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the relevant scales, the diffusivities cannot be arbitrarily small,
we consider the possibility of diffusion to not be self-generated.
Instead, diffusion may stem directly from a turbulent gas, the
diffusivity and viscosity of which we denote as δg and αg,
respectively.

In the preceding sections, we were exclusively concerned
with particle diffusivity δ, which we treated as wholly inde-
pendent from τs. While this is mathematically self-consistent, it
does not necessarily reflect physical conditions. Indeed, an
increased particle response time to turbulence diminishes the
diffusion experienced by the particles as (Youdin 2011)

d
t t

t
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+ +
+

1 4

1
, 59s s

2

s
2 2 g

( )
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which reduces to δ∼ δg for small stopping times, but becomes
d d t~ g s

2 for large stopping times. That is, large grains feel a
much reduced turbulence than that in the gas.

Consider, for example, gas with a fiducial diffusivity of
δg∼ αg∼ 10−3, which is a typical value in numerical simula-
tions of vertical shear instability or magneto-rotational
instability (e.g., Flock et al. 2017). For τs∼ 10, this would lead
to δ∼ 10−5, which is comparable to the diffusivities generated
by streaming instability with smaller particles. The fastest-
growing scale per Equation (55) remains unchanged at
∼0.02H. Indeed, since the diffusive instabilities discussed in
this paper depend on ξ= δK2 only, any decrease in the diffu-
sivity due to particle response to turbulence would only shift
the fastest-growing mode down to smaller scales, but not
prohibit the mechanism itself from operating.

We thus argue that the large stopping time instability and
overstabilities may find applicability if a big enough collection
of large stopping time particles are available in protoplanetary
disks, or if the dust layer has a collective stopping time that
exceeds unity. Note, that this estimation ignored the effect of
the particle layer on gas turbulence, i.e., δg itself. For example,
turbulence driven by the vertical shear instability is damped by
dust feedback, even when the dust-to-gas ratio is less than unity
(e.g., Lin 2019).

5.6. Caveats and Additional Considerations

Our vertically averaged model neglects vertical motions.
Therefore, inertial waves are discarded, such that the classical,
axisymmetric streaming instability is not captured by our
model (Squire & Hopkins 2018), even if we were to include the
gas equations with a radial background pressure gradient.
While we attribute the underlying turbulence, characterized by
diffusion and viscosity of the dust fluid, to the streaming
instability (or an equivalent mechanism), filament formation in
our model is not a direct result of this underlying, small-scale
instability. Instead, it originates from one or more intrinsic
large-scale instabilities of the midplane dust layer, described by
our model. In order to neglect gas perturbations, our model is
time averaged over one turbulent correlation time. As a result,
linear modes with frequencies smaller than one inverse corre-
lation time should be considered with caution. Future work
should include the dynamical equations describing the gas, as
well as the vertical dimension, to investigate filament formation
via streaming-type instabilities with variable viscosity and
diffusivity in a more rigorous manner.

In our model, the diffusion and viscosity slope is assumed to
depend on the dust surface density only, primarily because of

the available numerical constraints from Schreiber & Klahr
(2018) and Gerbig & Li (2023) and due to the analogy to
isothermal hydrodynamic models for viscous instabilities in
planetary rings. However, if diffusion and viscosity indeed
arise from small-scale streaming instabilities, other dependen-
cies are conceivable, namely a relative dust–gas streaming
velocity which powers the streaming instability in the first
place.
We also neglect particle self-gravity as filaments already

form before self-gravity is turned on in simulations (e.g.,
Schreiber & Klahr 2018; Gerbig et al. 2020; Gerbig & Li
2023). Nonetheless, self-gravity may have importance, mod-
ifying the instability criteria and growth rates. To first order, it
has a destabilizing effect and would amplify density enhance-
ments, as well as permit gravitational instabilities (e.g., Youdin
& Shu 2002; Youdin 2011; Tominaga et al. 2019, 2023; Gerbig
et al. 2020; Gerbig & Li 2023). We reserve this topic for
subsequent studies.
Lastly, we also ignored the possibility of a polydispersed

dust fluid with a distribution of stopping times, and instead
asserted a single stopping time, which is reasonable for a top-
heavy size distribution (e.g., Birnstiel et al. 2012). Still, the
damping effect of particle size distributions on the streaming
instability (Krapp et al. 2019; Paardekooper et al. 2020; Zhu &
Yang 2021; Yang & Zhu 2021) underscores that this is a
relevant point to keep in mind in future investigations of dif-
fusive instabilities.

6. Summary

In this work we present a novel, vertically averaged axi-
symmetric hydrodynamic model for a dense particle layer
embedded in a gaseous protoplanetary disk. The dust being
dominant, we model the effect of gas as a perturbation on the
dust dynamics by evoking drag forces, mass diffusion, visc-
osity, and pressure of the dust. The pressure is assumed to
depend on the dust diffusivity following a sedimentation–dif-
fusion ansatz, and diffusivity and viscosity are allowed to
depend on the dust surface mass density. We find that our
model supports a variety of linear diffusion and oscillatory
instabilities.
The diffusion instabilities arise if the dust particles’ diffusion

and/or viscosity decrease sufficiently fast with increasing
particle surface mass density, which is motivated by the results
of past simulations. Specifically, for well-coupled particles with
τs= 1, the diffusion-dependent pressure can destabilize the
particle flow if the mass diffusion slope with respect to the dust
surface mass density is sufficiently negative. On the other hand,
for decoupled particles τs 1, instability is driven by the
viscosity slope, similar to the viscous instability in planetary
rings.
The main application of our model is a dense midplane

particle layer subject to turbulence generated by the streaming
instability on small scales. Indeed, the diffusivities associated
with streaming instability turbulence measured in past simu-
lations are found to be sufficient for the diffusive instabilities in
our model to possess appreciable growth rates on the order of
the dynamical timescale, and radial length scales that are
characteristic of overdense particle filaments seen in numerical
simulations of the streaming instability. Based on these find-
ings we argue that diffusive instabilities as captured by our
model may play a role in filament formation within dusty
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protoplanetary disks, which is a key step within the streaming
instability paradigm of planetesimal formation.

In addition, our model can also give rise to growing oscil-
latory modes. In the inviscid case, large stopping times τs can
in principle result in overstable modes on a wide range of radial
length scales, regardless of the diffusion slope, as the radial
diffusion flux alone can provide the necessary repellent accel-
eration. In the presence of viscosity, this overstability is
damped, unless the viscosity slope is sufficiently flat. In this
case, the overstability behaves similar to the axisymmetric
viscous overstability in planetary rings. Whether or not this
instability has applicability in protoplanetary disks is unclear,
as it relies strongly on the particles possessing large stopping
times τs> 1, as well as their interaction with the gas
turbulence.

More detailed analytical investigations including vertical
motions and an explicit inclusion of gas within a two-fluid
formalism, accompanied by additional numerical constraints on
diffusivity, viscosity, as well as their slopes, will be crucial to
pinpoint further the relevance of diffusive instabilities in dusty
protoplanetary disks, filament formation therein, and planete-
simal formation.
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Appendix A
Justification for Chosen Hydrodynamic Equations

We utilize Reynolds averaging to justify the basic equations
used in our model. Hereby, we decompose the instantaneous
physical variable A into average 〈A〉 and short-term ΔA fluc-
tuations with the property 〈ΔA〉= 0.

Consider the continuity equation for surface density
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respectively, for an axisymmetric dust disk. The left-hand side
of both momentum equations is the rate of change of the
momentum expressed as the sum of the Eulerian derivative and
advection term. The right-hand side of Equation (A2) includes
a curvature term, external gravitational potential, and a drag
term. The right-hand side of Equation (A3) includes a curvature
term and drag term only. Reynolds decomposition and

subsequent averaging yields (compare to, e.g., Cuzzi et al.
1993; Tominaga et al. 2019)
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where we introduced the components of the Reynolds stress
tensor as

s = -áSñáD ñ - áDSD ñv v , A7rr r r
2 2 ( )

s = -áSñáD ñ - áDSD ñff f fv v , A82 2 ( )

s = -áSñáD D ñ - áDSD D ñf f fv v v v . A9r r r ( )

Following Cuzzi et al. (1993) and Tominaga et al. (2019), we
ignore the second terms on the left-hand side of both
momentum equations. We also assume that the terms

áDS D - D ñ-t v ur rs
1 ( ) and áDS D - D ñf f

-t v us
1 ( ) vanish,

which is the case if Δvr=Δur and Δvf=Δuf, as assumed in
Cuzzi et al. (1993) and Tominaga et al. (2019).
Next, we assert the following set of closure relations
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Equations (A10) and (A11) are the gradient diffusion hypoth-
esis (see Cuzzi et al. 1993; Goodman & Pindor 2000; Schräpler
& Henning 2004; Shariff & Cuzzi 2011; Huang & Bai 2022;
Binkert 2023). Equation (A14) defines the effective particle
velocity dispersion (Cuzzi et al. 1993; Tominaga et al. 2019).
Finally, Equations (A12) and (A13) employ the Boussinesq
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hypothesis (also see Binkert 2023) for the dust fluid and in the
process introduce viscosity into the problem via the viscous
stress tensor in Equation (6)—a choice that relates it to the
Reynolds stress tensor components via

s s= -áSñ + = = -áSñ +ff ffc T c T , A15rr rrd
2

d
2 ( )

s s= = =f f f fT T . A16r r r r ( )

The correlations in Equations (A12) and (A13) are dropped in
Tominaga et al. (2019). For ν= 0, our closure relations are thus
identical to theirs. Huang & Bai (2022) additionally drop the
pressure term in Equation (A14).

The closure relations in Equations (A10)–(A14) establish a
Newtonian stress–strain relation for the particle fluid, in the
process removing the need for an evolution equation for the
stress tensor. This becomes questionable for τs> 1, where a
kinetic approach is preferred over this fluid dynamical treat-
ment (see Jacquet et al. 2011; Section 2.3).

Using the gradient diffusion hypothesis, the continuity
equation can directly be rewritten as an advection–diffusion
equation, i.e.,
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In the momentum equations, all terms containing 〈ΔΣΔvf〉
drop due to axisymmetry. We are left with
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The first two terms in both equations are just the radial and
azimuthal components of the divergence (in cylindrical coor-
dinates) of the viscous stress tensor, respectively, i.e.,
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The remaining terms in áSñFr̃ and áSñ fF̃ were already derived
by Tominaga et al. (2019) and are associated with the bulk
transport of momentum by the diffusion flux as well as the

diffusive transport of bulk momentum. We thus can rewrite the
momentum equations into the form
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Dividing by 〈Σ〉 leads to Equations (2) and (3). For clarity we
omit the brackets 〈〉 in the paper’s main text. Note, that unlike
Klahr & Schreiber (2021), we specifically keep the drag term in
the azimuthal momentum equation.

Appendix B
Dust Pressure Model

Appendix A uses Reynolds averaging to derive a pressure-
like force term of the form ∂P/∂r in the radial momentum
equation, where = SP cd

2 can be understood as the effective
dust pressure, with velocity dispersion cd, which we allow to
vary with density.
Specifically, following Klahr & Schreiber (2021), we

employ a sedimentation–diffusion ansatz to model the
dependence of the dust velocity dispersion on the diffusivity.
The heuristic argument is to compare the settling time under
linear gravity at terminal velocity tset= 1/(tsΩ

2) with the dif-
fusion time tdiff= 1/(Dk2) across a length scale ∼1/k, where D
is the mass diffusion coefficient of dust. Similar to Brownian
motion (Einstein 1905), sedimentation–diffusion equilibrium4

leads to = W ºD t k cs
2 2

d
2. The regularized expression,

which does not diverge in the limit of τs= 0, requires con-
sideration of the gas also, leading to a dust layer thickness of

d d t= +H Hd s( ) (see, e.g., Lin 2021). We define the
effective particle velocity dispersion via

º W = =
+

d
d t+

c H c
D

D t c
c . B1d d s

s s
2 s

s
( )

As also noted by Klahr & Schreiber (2021), the sedimentation–
diffusion velocity dispersion cd, and thus our closure relation, is
in general different to the rms velocity of the particles. The
Hinze–Tchen formalism for turbulent transport neglecting
orbital oscillations or other external forces (Tchen et al. 1947;
Hinze et al. 1959), gives the rms velocity as (also see, e.g.,

4 Note, that this same argument can be made in the radial direction by
replacing the stellar vertical gravity with the restoring force from radial epi-
cyclic oscillations as −Ω2x.
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Fan & Zhu 1998; Youdin & Lithwick 2007; Binkert 2023)

=
+

v
t

t t
u , B2rms

2 c

c s
rms
2 ( )

with gas velocity dispersion urms and correlation time of the
turbulence tc, which connect to the gas diffusivity Dg via

=D t ug c rms
2 . Only if Dg∼D (see Equation (59)) and ts? tc

does the rms velocity equal the velocity dispersion following
from the sedimentation–diffusion ansatz. While the former is
fairly well grounded in numerical simulations (e.g., Schreiber
& Klahr 2018), the latter is somewhat more ambigous. For
Kolmogorov turbulence, the correlation time equals the turn-
over time of the largest eddies, which in protoplanetary disks
equals Ω−1 (Youdin & Lithwick 2007). On the other hand,
Schreiber & Klahr (2018) find for simulations values with
active streaming instability values of tc∼ 0.1Ω−1. Indeed,
ignoring orbital oscillations is only a good model if ts and
tc= 1. For larger particles, epicylic oscillations are important;
particles can decouple from the turbulence and the velocity
dispersion and thus diffusion needs to be modified (see Youdin
& Lithwick 2007; Youdin 2011; Equation (59)). We neglect
this effect in this work. While our pressure term does vanish for
large stopping times like the prescriptions used by, e.g., Youdin
(2011) and Umurhan et al. (2020), the diffusivity itself does
not, and is instead treated as an independent parameter. This is
important to be kept in mind when evaluating our model, in
particular in the large stopping time limit.

Klahr & Schreiber (2021) call cd the pseudo–sound speed,
which is appropriate as long as cd is constant. In our work, we
allow the diffusivity to depend on density, and thus

µ µ Sbc Dd
2 diff . As a result, the dust pressure takes the form of

a polytropic equation of state, i.e., µ S b+Pd
1 diff . One can can

now formally define a dust sound speed ad via

b=
¶
¶S

µ + Sba
P

1 . B3d
2

diff diff( ) ( )

If βD<−1, this effective squared sound speed is negative, and
as a result, so too are the associated pressure perturbations.
Indeed, such a negative pressure perturbation is a necessary
(but not sufficient) requirement for the diffusion-dependent
pressure-driven diffusive instability that may operate for τs 1,
as discussed in this paper.
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