Streaming instabilities in modern protoplanetary disks

Min-Kai Lin

September 2022

NAR Labs 財團法人國家實驗研究院 **National Center for High-performance Computing**

Planetesimal formation

But first: dust settling

Planetesimal formation via the SI

SI is powered by radial drift

The ideal SI

- disk is non-turbulent → Chen & Lin (2020)
- disk has no vertical structure → Lin (2021)
- disk is unmagnetized

 Lin & Hsu (2022)

 Hsu & Lin (2022)

Streaming instability is easily killed by turbulent viscosity

Stratified dust layers

Lehmann & Lin (2022)

"Vertically shearing SI" in stratified disks

Vertically shearing SIs grow fast but...

dust layer dispersed

Can modern disk models help?

Streaming instability without pressure gradients

Azimuthal drift streaming instability

@UVa Hsu & Lin (2022)

Dust concentrates even when $\rho_d < \rho_g$ initially

Summary

- Dust settling opposed by turbulence
- SI is easily stabilized by viscosity
- Vertically shearing SI in stratified disks
- Azimuthal drift SI in accreting disks

Thank you **Solution Color Minimum Color Mi**